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Abstract
We present an AI called Visuo that guesses quantitative 
visuospatial magnitudes (e.g., heights, lengths) given 
adjective-noun pairs as input (e.g., “big hat”). It uses a 
database of tagged images as memory and infers un-
experienced magnitudes by analogy with semantically-
related concepts in memory. We show that transferring 
width-height ratios from a semantically-related concept 
yields significantly lower error rates than using dissimilar 
concepts when predicting the width-height ratios of novel 
inputs.

Introduction
Visual instantiation is a cognitive process that generates 
visual and spatial descriptions. People visually instantiate 
when reading, designing, and planning. We can describe 
visual instantiation as having two steps. First, the agent 
must decide what to visualize. This process generates a 
structured scene description. Second, it has been argued 
that, in humans, this structured scene description is used to 
generate an image or bitmapped depiction (Kosslyn, 1994). 
The present work contributes to the first step.

Specifically, the problem we address is the estimation of 
quantitative magnitudes. For example, if a person is asked
to imagine a “huge broom,” he or she will have no trouble 
doing so, even if the person has never experienced a broom 
that had been labeled as “huge” before. 

Visuo is a computer program that solves this problem 
with a low error rate. Briefly, the program receives labeled 
images to populate its visual memory, and then when 
called upon to visualize (estimate a quantitative 
magnitude), it intelligently adapts the most semantically 
related concept in memory. 

We will describe how Visuo works, and then evaluate its 
output. Our hypothesis is that when estimating quantitative 
magnitudes of unseen concepts, transfer from semantically 
similar concepts will produce better results than 
transferring from semantically dissimilar concepts.

Visuo
We will give a brief overview of Visuo before describing 
the details of its processing.  
  Visuo works in two stages: training and visualization. In 
the training stage, it is trained on a database of labels 
associated with point clouds in digital images. These point 
clouds act as a rough segmentation of salient objects found 
within each image. From the segmentations, Visuo can 
infer the ratio of width to height for each label. Although 
Visuo is capable of inferring any spatial attribute that can 
be quantified, only width to height ratio is demonstrated in 
this paper because there is a lack of availability of adequate 
databases from which to train. 

During the visualization stage, Visuo takes as input an 
adjective-noun pair (ANP), and produces, as output, a 
quantitative estimate of the width-height-ratio (WHR) of 
the object described by the ANP.

If Visuo has experienced examples of the ANP in the 
training phase, it simply returns the mean of the ratios 
observed. If Visuo has not, then it must infer what the ratio 
is through an analogy with a similar noun in memory. 

In the next subsections, we will describe Visuo in detail.
Because of our limited space, we will describe only those 
aspects of Visuo relevant to the current evaluation; see 
Gagne and Davies (in press) for a full description.

Training Stage 
Visuo takes in Adjective-Noun Pairs (ANPs), associated 
with Width-Height Ratios (WHRs). These data are gleaned 
from the Peekaboom database. Peekaboom is a game that 
collects data for research (von Ahn, Liu, & Blum, 2006).
The game contains 57,797 images, which have labels 
associated with each image. These associations are data 
from a related game, the ESP game (von Ahn & Dabbish, 
2004). In total there are 11,810 distinct labels. One player,
the “boomer,” sees an image and an associated label. His  
or her job is to click parts of the image, revealing those 
parts to another, anonymously paired player, the “peeker,” 
whose job it is to guess what label the boomer has in front 
of him or her. When the peeker successfully types in the 
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word, both receive points and they move on to the next 
image.  
 As a result of this game play, we have access to a large 
image database with labels associated with respective point 
clouds. We assume that the point cloud roughly describes 
the shape of the object, although in some cases it does not 
(e.g., revealing a face rather than a whole body to make the 
peeker guess “woman”). Input errors resulting from when 
this assumption is incorrect further increase our reported 
errors. Therefore, the reported error rates should be viewed 
as the upper bounds.  
 We calculate the height of an object by finding the 
vertical distance between the highest and lowest points on 
the y-axis, and calculate the width by finding the horizontal 
distance between the two most distant points on the x-axis. 
The WHR is roughly the width divided by the height.  
High WHR objects are wide and thin (e.g., a horizon), 
medium WHR objects are square or round (e.g., a beach 
ball), and low WHR objects are tall and thin (e.g., a 
flagpole). 
 A subset of the entire database was used since the 
massive database far exceeded the memory capacity of the 
computers used. Nine objects were used to create the 
subset: cat, crow, dog, person, raven, skyscraper, tower, 
pole, and building. The chosen objects were not selected to 
reduce error rates, and were chosen arbitrarily. We used the 
first available 100 instances of each concept.  
   
Processing the input. Each WHR is converted from a 
crisp number to a distribution over fuzzy numbers (Dubois 
& Prade, 1987). Rather than storing a single number, a 
vector of membership values (ranging between 0 and 1) is 
stored for each fuzzy number set. This was done to emulate 
the varying spatial sensitivity of receptor cells in the 
human perceptual system, which produces fuzzy outputs 
depending on how close to their ideal the stimulus is 
(Hubel & Weisel, 1965) Visuo was designed to be a model 
of human thought. Detectors have been found to pick up 
even high-order visual concepts such as buildings and 
faces (Krieman, Koch, & Fred, 2000). Behavioral data 
show that people represent things with graded membership 
to categories in general (Hampton, 2007). We conjecture 
that higher-level perceptual detectors in the brain also 
represent spatial magnitudes and detect relevant stimuli 
with variable category membership as a function of the 
firing rates of neural populations. The fuzzy numbers are 
organized in a logarithmic scale (with the addition of zero), 
reflecting people’s natural tendency to think of numbers 
logarithmically (Dehaene, Izard, Spelke, & Pica, 2008).  
 Our collection of magnitude detectors is modeled by a 
distribution, which has a slot for fifteen points on the 
(roughly) logarithmic mental unit scale (0, 2, 5, 10, 20, 35, 
65, 100, 160, 250, 400, 600, 900, 1350, 1800), as shown in 
Figure 1. Each input distribution modifies a prototype 
distribution for the given label. Thus, the prototype for 
“crow” is a vector describing a distribution over fuzzy 
numbers. Each number in the vector represents the mean 
fuzzy membership value for that fuzzy number across all 

instances observed of that label. The prototype represents 
the WHR of all crows. Upon experiencing another example 
of the WHR of a crow, each fuzzy membership number 

 in the distribution is averaged with  

 
where vold is the previous value, vnew is the new value. 
Following the calculation of vavg, the count n is increased 
by 1. Visuo incorporates each new experience of the same 
category into the prototype. For each fuzzy number in the 
vector, the prototype represents the mean value of the 
memberships of all exemplars for the corresponding fuzzy 
number. In this way, the prototype represents an average of 
all experiences. Inspired by Rosch (1973), prototypes are 
memories of general concepts of things, abstracted from 
specific instances. They represent the family resemblance 
of a category. For quantitative attributes, this is often 
interpreted as mean values. 
 WHR rj for a particular object j is calculated by 

 
where Xj is the set of the x-components of all points 
labeled with object j, Yj is the set of the y-components of 
all points labeled with object j, max(Xj) and min(Xj) are 
the maximum and minimum values in Xj , and max(Yj) and 
min(Yj) are the maximum and minimum values in Yj .  
 The Peekaboom data does not contain adjectives. We 
chose to label the top 30% of the distribution “high” WHR, 
the middle 40% “medium” WHR, and the bottom 30% 
“low” WHR. Although these percentages were arbitrarily 
chosen, we do not believe that changing them would affect 
our results. Visuo creates prototypes for crows in general, 
as well as separate prototypes for high WHR crows, 
medium, WHR crows, and low WHR crows. This is 
important because the meaning of a given use of an 
adjective depends on the context: a large blimp is much 
bigger than a large mouse. After all of the input has been 
collected, Visuo has stored in its memory a prototype for 
every noun (e.g., “crow”) and every ANP (e.g., “high 
WHR crow”).  

Visualization Stage 
The visualization stage takes an ANP as input and 
produces an estimated WHR as output. It does this by 
defuzzifying the prototype with the label matching the 
ANP. When the appropriate prototype is already in 
memory, Visuo simply retrieves and uses it. This is the 
trivial case. When there is not an appropriate prototype in 
memory, Visuo must create one. The way this imagined 
prototype is created is the main contribution of this work.  
 We will describe the process with a running example. 
Suppose Visuo has experienced many crows and buildings, 
and many of these instances were also labeled as having 
high, medium, or low WHR. Suppose also that Visuo has 
experienced ravens, but these experiences were not labeled 
with respect to the WHR. When Visuo is called upon to 
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imagine the WHR of a “high WHR raven,” it has no 
prototype labeled as such. It only has the generic “raven” 
prototype. 

Visuo first searches its memory for the most 
semantically related term for which there are WHR labels, 
and retrieves its prototype. For example, “raven” is 
compared to each of the generic versions of the prototypes 
(e.g., tree, crow, city) using the Wu-Palmer similarity 
measure (Wu & Palmer, 1994) as implemented in NLTK 
version (Bird & Loper, 2004) of WordNet (Fellbaum, 
1998). The prototypes identified to be most similar are 

selected as the specific source prototype (“high-WHR
crow”) and the general source prototype (“crow”). The 
general target prototype is the noun prototype (“raven”)
that is to be combined with the attribute modifier
(discussed below) to create the specific target prototype
(“high-WHR raven”).

Then it finds a mathematical transformation that turns 
the distribution of “crow” into the distribution of “high 
WHR crow.” 

We view adjectives as functional entities that modify 
their associated noun phrases. This allows Visuo to use 

Figure 1.  Fuzzy numbers and their actual membership functions at two different scales. The values along the horizontal axis represent 
crisp number inputs. The values along the top label are the fuzzy number sets. The vertical axis represents the degree of membership of that 
crisp number in a given set. For example, a crisp input of 700 is a member of fuzzy number 400 to a degree of 0.40, a member of fuzzy 
number 600 to a degree of 0.8667, a member of fuzzy number 900 to degree 0.60, a member of fuzzy number 1350 to degree 0.1333 and a 
member of all other fuzzy numbers to degree 0.0.
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adjectives to describe new concepts as long as the meaning 
of the adjective can be abstracted and transferred from a 
similar situation. 
 Attribute modifiers are created from adjective senses 
and used to modify nouns, creating new adjective-noun 
concepts. They are the instantiation of the functional 
capabilities of an adjective in a particular context. For 
example, attribute modifiers are created from the adjective 
“large” with respect to “crow” and can be applied to 
“raven” to create a concept for “large raven”. Attribute 
modifiers are data structures that represent how each 
attribute in a noun prototype is modified by an adjective 
prototype such that the noun prototype becomes an 
adjective-noun prototype.  
 Attribute modifiers contain two distributions, a modifier 
density and a multiplier. The modifier density distribution 
is a normalized copy of the attribute’s distribution of the 
general source prototype (e.g., “crow”). The multiplier is 
created by a piecewise multiplication of the general source 
prototype by the specific source prototype. More formally, 
the multiplier m is a vector where each element is defined 
as   

where k is the size of the distributions, Gi is the ith element 
in the general source concept distribution, and Si is the ith 
element in the specific source concept. 
 Having found this transformation, it then applies the 
same transformation to the generic “raven” prototype, 
resulting in the generation of an imagined “high WHR 
raven” prototype. If we return to our example, since crows 
are smaller than ravens, simply applying the concept 
modifier by multiplying the attribute modifiers’ multiplier 
distribution by the “raven” attribute distributions would 
result in an inappropriate matching of the numbers in the 
distribution. In fact, without adjusting the distributions, a 
“large raven” could have the distribution of what a “small 
raven” should have, or it could have a distribution 
consisting of all zeros. Visuo associates the values of the 
two distributions with the percent of the distributions that 
those values cover. 
 Visuo creates a density distribution for the modifier 
values and one for the target prototype, which is a 
representation of how dense the data is at different parts of 
the distribution. For example, a density distribution might 
tell us that most of the data is in the low ranges, with very 
little in the high ranges. To make this, Visuo copies and 
normalizes the distribution of the source object’s 
attribute. Normalization is defined here as transforming a 
distribution such that the sum of the distribution’s values 
equals one. This density distribution is stored with the 
respective attribute modifier as the modifier density 
distribution. At this point the multiplier is ready to be 
combined with the target prototype “raven.”  The target 
density distribution is created by normalizing the target 
distribution.  

 Each value in the target distribution is multiplied by a 
percentage of the numbers in the multiplier. This 
percentage is determined by matching elements of the 
target density distribution to sections of the multiplier 
density distribution. For example, the first number in the 
target distribution might be multiplied by the first two, or 
even the first 2.6 numbers in the multiplier. If this 
percentage matching is not done, then large portions of 
distributions end up being unjustifiably multiplied by zero. 
The creation of the complete novel concept is now 
complete.  
 Once Visuo has a prototype that matches the input, the 
final step is defuzzification, which is the process of 
transforming a fuzzy qualitative distribution (such as an 
attribute’s distribution) into a quantitative crisp number. 
The crisp number N is computed by taking a weighted 
average of the distribution as defined by: 

 
where, ui is the membership value in the distribution 
and val(Si) is the value of the fuzzy number (e.g., val(35F) 
= 35). The denominator i(ui) is used to normalize the 
result. 
   Visuo defuzzifies from this distribution to create its 
final output, which is a precise estimation of the WHR of a 
“high WHR raven.”  

Evaluation 
Our hypothesis is that transferring from a semantically-
related prototype will generate more accurate predictions 
of WHR. In particular, we predict that using semantically-
related prototypes will result in better results than 
transferring from semantically distant prototypes.  
 To test this hypothesis, we selected nine concepts and 
tried to predict their WHRs using Visuo. For each concept 
we created three ANP inputs (e.g., “low-WHR cat,” 
“medium-WHR cat,” and “high-WHR cat”) and predicted 
their WHRs using the most similar other concept (of the 
nine) and the most dissimilar concept. As shown in Table 
1, “dog” was the most semantically-related concept to 
“cat,” and “pole” was the most dissimilar.  
 For each concept, we altered the training phase of Visuo 
such that each test concept was not associated with any 
adjectives (e.g., “high WHR”). That is, for predictions 
about cats, Visuo experienced cat WHRs, but they were 
not labeled as high or low. For each of the other eight 
concepts, Visuo experienced not only the WHR, but each 
WHR was associated with an adjective such as “low 
WHR.” Because of this, Visuo was forced to search 
memory for a semantically-related concept from which to 
transfer.  
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Table 1. Visuo’s visualization results demonstrating increased accuracy when using semantically similar concepts with respects to 
semantically dissimilar concepts. * Statistically significant (p < 0.001) using Wilcoxon Signed-Rank Test (non-parametric).  
 

Results 
The results are presented in Table 1. In the column labeled 
“Visualization Phrase” are the test ANPs. The columns 
“most similar” and “least similar” show the terms that the 
similarity metric determined were the most and least 
similar to the input phrase (out of the nine concepts under 
consideration). The “Estimated Ratio (similar)” column 
shows Visuo’s predictions for the WHRs for the test ANP. 
The column labeled “Estimated Ratio (dissimilar)” shows 
the WHRs predicted based on the least similar concept. 
The “Actual Ratio” column shows the correct WHR for the 
ANP (the mean WHR for the lowest third WHRs of cats). 
In this test, the accuracy of Visuo is the closeness of the 

numbers in the Estimated Ratio (similar) and Actual Ratio 
columns.  
 The “% Error” columns show the percent error (between 
predicted and correct) for the similar and dissimilar 
concepts. If our hypothesis is correct, then the “similar” % 
Errors should be smaller than the “dissimilar” % Errors. 
 Transferring data from similar concepts increases 
accuracy of WHR predictions as compared to using 
dissimilar concepts. In 24 of the 27 cases, the error was 
lower for similar than for dissimilar transfers, as predicted. 
The mean percent errors are significantly different using a 
Wilcoxon Signed-Rank Test (Z = 3.61, p < 0.001).  
 For the similar concepts, Visuo’s estimates were very 
close to the actual values. The worst estimates were 
“medium crow” (16.58%) and “thick crow” (11.92%), 
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which used “medium raven” and “thick raven” as a base, 
respectively. These estimates are quite reasonable 
considering the Peekaboom database only contained 6 
instances of “medium ravens” and 3 instances of “thin 
ravens” from which to train. Increasing the number of 
instances dramatically improves results, which can be seen 
with the width-height ratio prediction for a person. For all 
three “person” predictions, the error was 0.81% or less. 
Overall, the average error is 6.98%, which indicates that 
the cognitive model Visuo can estimate the quantities of 
unknown spatial attributes with low error rates. 

Conclusion 
Visuo implements a program that can estimate quantitative 
values for adjective-noun pairs that have not been 
experienced by transferring knowledge from prototypes 
created from experiences of related objects. We tested the 
accuracy of this method with width-height ratios. The 
results support our first hypothesis: the average error rate 
for WHR prediction was low (6.98%).  
 In addition, we have shown that transferring from 
semantically-related concepts in memory yields better 
results. The least semantically-related item provided 
information that was significantly worse (8.09 percentage 
points of error different).  
 Future work will explore the efficacy of the 
computational choices of using fuzzy numbers, the 
logarithmic scale, and a larger number of test objects. 
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