
Proteus: Visual Analogy in Problem Solving

Jim Davies a Ashok K. Goel b Patrick W. Yaner b

aSchool of Computing
Queen’s University; Kingston, ON, K7L 3N6 Canada

bCollege of Computing
Georgia Institute of Technology Atlanta, GA 30332 USA

Abstract

This work examines the hypothesis that visual knowledge alone is sufficient for
analogical transfer of problem-solving procedures. It develops a computational the-
ory of visual analogy in problem solving which has been implemented in a computer
program called Proteus. Proteus provides two main things. Firstly, it provides a
content account for visual analogy in problem solving, along with a corresponding
vocabulary and data structures for representing the knowledge content. Secondly,
Proteus provides a process account for visual analogy in problem solving, along
with corresponding methods and algorithms. Proteus addresses all major subtasks
of analogy. It also identifies a new subtask in the task stucture of analogical problem
solving: dynamic generation of new mappings between the intermediate knowledge
states in the source and the target cases when a step in the transferred procedure
creates a new object. Finally, by examining the limitations of use of visual knowledge
alone, Proteus helps identify the functional roles of (non-visual) causal knowledge
in analogical problem solving.

Key words: analogy, visual reasoning, visual knowledge, problem-solving,
case-based reasoning, diagrammatic reasoning, diagrams

1 Introduction

Visual analogy is a topic of longstanding and growing interest in AI. Evans’
early ANALOGY program solved multiple choice geometric analogy problems
of the kind found on many intelligence tests [9]. Figure 1 illustrates this kind

Email addresses: jim@jimdavies.org (Jim Davies), goel@cc.gatech.edu
(Ashok K. Goel), yaner@cc.gatech.edu (Patrick W. Yaner).

Preprint submitted to Artificial Intelligence November 2005



5

A C

?

B

1 2 3 4

Fig. 1. Evans’ ANALOGY program solved problems in geometric analogy. Given A,
B, and C, the problem is to determine which one of the choices 1–5 has a relationship
to C that is most similar to the relationship B has to A.

of A:B::C:? problem. To address this problem, ANALOGY first found the
relational differences between A and B, then found the relational differences
between C and each of the available choices, and finally selected the drawing
whose relational differences with C were most similar to the relational dif-
ferences between A and B. The more recent Letter Spirit system [35] takes
a stylized seed letter as input (e.g., f but with the crossbar suppressed) and
outputs an entire font, from a to z, in the same style as the seed. Letter Spirit
addresses this problem by first finding the base letter most similar to the
seed letter and thus determining what letter is presented as the seed (e.g., f),
then determining the relational differences base letter and the seed letter (e.g.,
crossbar in f is suppressed), and finally drawing similar components of other
letters in the same way as the seed letter. Thus, when Letter Spirit makes a
lower-case t, by analogy to the seed letter, it suppresses the crossbar. Note the
mappings between letter components are already in the system: the vertical
bar part of the letter d maps to the vertical bar in the letter b, for example,
and similarly, the crossbar of t maps to the crossbar of f.

Neither ANALOGY nor Letter Spirit, however, engage in analogical problem
solving, a central issue in AI. This poses the primary question for this research:
is visual knowledge alone sufficient for analogical problem solving? Problem
solving may be characterized as generation of procedures that contain two or
more steps. Typically, the procedures are strongly-ordered in that certain steps
must precede others. It follows that analogical problem solving involves the
transfer of a procedure from a source (or base) case to a target problem. We
start with the initial hypothesis that visual knowledge alone is sufficient for
analogical transfer of strongly-ordered procedures. This leads to the first goal
of our work: to develop a computational theory of visual analogy in problem
solving.

As ANALOGY and Letter Spirit illustrate, analogies in general address new
problems by finding relational similarities and differences between a target
problem and a source case and transferring some knowledge (or action) from

2



the source to the target. In general, analogy involves several subtasks including
retrieving from memory the source case most similar to the target problem,
mapping (or aligning) the the elements of target and the source, transferring
knowledge from the source to the target, evaluating what was transferred in
the context of the target, and storing the target in memory. These tasks may
themselves involve additional subtasks. For example, the retrieval task may
be decomposed into the subtasks of reminding and selection, and the transfer
task may involve the subtask of adaptation. ANALOGY addresses only the
mapping and transfer subtasks of analogy. In contrast, Letter Spirit addresses
only the retrieval, transfer and evaluation subtasks (since the mappings be-
tween different letters are already stored in the system). A second goal of our
work is to build a unified theory of visual analogy that not only addresses all
major subtasks of analogy, but also uses a uniform knowledge representation
for all the subtasks.

Also as illustrated by ANALOGY and Letter Spirit, visual analogy refers to
analogy based only on the appearance of a situation. e.g., the shape of the letter
f and the spatial relationship between its components. Causal and functional
knowledge is either not present or is (at most) implicit. Thus, in visual analogy,
knowledge states in source cases and target problems are characterized by
shapes of objects (e.g., a line, a semi-circle, etc.), and spatial relations among
the objects or their components (e.g., above, left-of, contained-in, etc.). Both
ANALOGY and Letter Spirit describe a content account of shapes and spatial
relations in their respective domains. Our work similarly describes a content
account of shapes and spatial relations for visual analogy in problem solving,
and provides a vocabulary and data structures for representing the content.

In addition, both ANALOGY and Letter Spirit provide a process account
for their respective tasks. Their process account is articulated in terms of
their task decompositions, methods for accomplishing specific tasks in the
task structure, and algorithms corresponding to the methods. Our work simi-
larly provides a process account for visual analogy in problem solving in terms
of task structures, methods and algorithms. A significant finding of our work is
that if and when a step in the problem-solving procedure being tranferred from
a source case to a target problem creates new objects, then the analogical pro-
cess needs to dynamically generate a new mapping between the corresponding
intermediate states in the source case and the target problem.

The Proteus system is an implementation of our computational theory of vi-
sual analogy in problem solving. Proteus addresses all major subtasks of ana-
logical problem solving. However, since visual representations do not capture
(non-visual) causal and functional knowledge, the mapping task, as we will de-
scribe in detail below, generates multiple initial mappings between a retrieved
source case and the target problem. Further, since the evaluation subtask ap-
pears to require causal and functional knowledge, and since causality is (at

3



Analogical
Reasoning

Visual Reasoning

Problem Sovling

Fig. 2. At the task level, Proteus is a theory of problem solving. At the level of meth-
ods, it uses analogical reasoning to solve problems. In terms of types of knowledge,
it uses only visual knowledge for making analogies.

most) only implicit in visual representations, Proteus does not automate the
evaluation task with visual reasoning. By examining the limitations of use of
visual knowledge alone, Proteus helps identify the necessary functional roles
of causal knowledge in analogical problem solving.

2 Proteus

Knowledge states in Proteus are represented as 2-D line drawings generated
by vector graphics programs such as Xfig and Jfig. We will call these states
s-images (an abbreviation of ‘symbolic images,’ as they contain imagistic in-
formation represented symbolically). Proteus takes as input an s-image rep-
resenting an unsolved target problem, and outputs a procedure to solve the
target problem, where the output procedure is a sequence of s-images and
transfromations between them. Figure 3 illustrates what Proteus generates
once a source analog is selected. Given an s-image representing the target
problem (at the bottom-left of the figure), Proteus generates a procedure for
solving the problem in the form of a sequence of s-images (shown in the gray
area in figure).

Proteus contains a long-term memory of source cases, where each source case
contains a problem-solving procedure (as illustrated in Figure 3), and is in-
dexed by an s-image repersenting the initial knowledge state in the procedure.

4



Output by reasoner

Source

Target

mapping

Source Simage 1

mapping

Source Simage 2 Source Simage n

Target Simage 1 Target Simage 2 Target Simage n

mapping

Fig. 3. This figure illustrates the input and output to Proteus’ transfer in the ab-
stract. The input is an s-image representing the target problem (shown at the
bottom left). The output is a procedure represented as a sequence of s-images
(shown in the gray area at the bottom-right of the figure). Proteus generates the
procedure by transferring a procedure from a source case (shown at the top of the
figure). In the process, it retrieves source cases, generates mappings between the
target problem and the source case as indicated in the figure, and so on.

Proteus solves an input target problem by executing the five major subtasks
of analogy. The first task is retrieval, in which the target problem, represented
by a single s-image, is used as a query into the case base. If the retrieval
task outputs multiple source cases, then Proteus selects one for further pro-
cessing. The second subtask is mapping (as indicated in Figure 3), in which
the elements (i.e., objects, relations) of s-image representing the target prob-
lem are matched with corresponding elements in the s-image with which the
source case is indexed. The output of the mapping task is a series of maps,
each linking an element in the source to an element in the target. The third
subtask is transfer. Proteus transfers the steps in the procedure in the source
to the target problem one step at a time. The transfer task may also involve
adaptation of some elements in the source case. The fourth step is evaluation.
Proteus presently uses precompiled knowledge for evaluating the solution to
the target problem, as described below. If the evaluation fails, then it goes
back to the output of the retrieval task, and selects a different source case for
processing.

2.1 An Illustrative Example

We will use the classic fortress/tumor problem [8] as the running example
throughout this paper. In this problem, a general must overthrow a dictator
in a fortress. His army is poised to attack along one of many roads leading to
the fortress when the general finds that the roads are mined such that large
groups passing will set them off. To solve the problem, the general breaks the
army into smaller groups, which take different roads simultaneously, arriving
together at the fortress. In the unsolved target problem there is a tumor that
must be destroyed with a ray of radiation, but the ray will destroy healthy

5



s−image2

decompose

decompose

left−
road1

road1
top−

Output by Galatea

s−image3

s−image2 s−image3

s−image1

s−image1

map

road1
right−

map

map

map

map

mapping mapping mapping

to−
set

move−

move−

to−
set

right−
body1tumor1

left−
body1

body1
top−

tumor2 tumor3

fortress1 fortress3fortress2

Fig. 4. This figure illustrates the input and output of the transfer stage in Proteus
for the fortress/tumor problem. The input is an s-image representing the target
tumor problem (shown at the bottom left). The output is a procedure represented
as a sequence of s-images (shown in the gray area at the bottom-right of the
figure). Proteus generates the procedure by transferring a procedure from the source
fortress case (shown at the top of the figure). In the process, it retrieves source cases,
generates mappings between the target problem and the source case as indicated in
the figure, and so on.

tissue on the way in, killing the patient. The analogous solution is to have
several weaker rays simultaneously converging on the tumor to destroy it.
Figure 4 illustrates Proteus’ task for the fortress/tumor problem.

2.2 Knowledge Representation

It is important that Proteus use an uniform knowledge representation for all
subtasks of visual analogy in problem solving. Drawing in part on the lit-
erature on visual reasoning (e.g., [22,1]), and partly by trial and error, we
designed a knowledge representation language called Covlan (for Cognitive
Visual Language). Covlan provides a vocabulary for representing (a) prim-
itive visual elements in an s-image (such as a circle, a set, a connection),
(b) primitive visual relations s-image (such as touching, above, left-of), (c)
qualitative variables in s-images (such as locations, sizes, thicknesses), (d)
primitive transformations that apply to the visual elements and relations, and
change the elements, relations and/or the values of variables (such as move,
decompose, replicate), and (e) mappings between s-images. Of course, Covlan
in its present form is incomplete; a different class of problems than the one we
have studied may require additional primitives, which may provide additional
expressivity and precision.

6



Primitive Visual Transformations

Transformation name arguments

add-element object-type, location (optional)

add-connections connection/connection-set

decompose object, number-of-resultants, type

move-to-location object, new-location

move-to-set object, object2

put-between object, object2, object3

replicate object, number-of-resultants
Table 1
Primitive transformations.

looks−like

SIMAGE−2

has−component

has−location TOPCIRCLE NEW−OBJECT−4123

Fig. 5. A graphical representation of the three relationships added to an s-image
by the add-component transformation. Relations are boxed. beginning of arrows
are the in the

2.2.1 Primitive Transformations

Table 1 shows Covlan’s ontology of transformations. The application of the
first entry, add-element, to an s-image adds a new primitive element in the
next s-image in a procedure. The first argument, object-type, must be an
instance of one of the primitive elements (e.g. square or circle, described
below). It determines what kind of shape appears in the next s-image. The
second argument specifies the location of the shape. Covlan uses qualitative
locations: bottom, top, right, left, or center. As Figure 5 illustrates, the
application of add-element builds a representation for the next s-image by
adding three propositions to the representation of the current s-image (all of
Proteus’ memory is in propositional form: a relationship connects two concepts
with a relation.) (1) a has-component relation with the name identifying the
new component, 2) the new component’s name with a looks-like relation to
the object-type, and 3) the component’s name with a has-location relation
to the location input as an argument.

Add-connections is a transformation that inserts a set of connections in the
next s-image. The input is the name of the set of connections in the source.
To determine the nature of the connections in the target, Proteus uses substi-
tution for all the symbols in the source and the target to find the analogous

7



names, so that analogous connections are placed in the next target s-image.

Decompose takes a primitive element and replaces it in the next s-image with
some n elements. It also correspondingly reduces the thickness for each of
those elements.

Move-to-location changes the location of a primitive element from one loca-
tion to another. This means that in the next s-image, the old has-location

relation is removed and a new has-location relation is added, relating the
element to the input location, which can be an absolute location or another
element instance (in which the two element instances are co-located.)

Move-to-set takes in two sets as input (we will call them set-a and set-b).
The members of set-a are moved to the locations of the members of set-
b. If set-a and set-b have the same number of element instances, then each
element of set-a is placed on a distinct element in set-b. The element instance
matching is arbitrary. If set-a has more elements, then multiple members of
set-a are placed at the locations of each member of set-b. The number of
element instances in these groups is determined by the number of elements in
set-b divided by the number of elements in set- a. If set-b has more elements,
then elements of set-a are distributed across the locations of the members of
set-b.

Put-between takes two objects that are touching, and places some third
object in between them. In the new s-image 1) the two objects are no longer
touching and 2) the third is touching both of them.

Replicate takes in an element or set of elements and generates n new instances
of that element or elements in the next s-image. Its behavior is similar to
decompose, except that it does not change the size or thickness of elements,
and can work on sets as well as single element instances.

2.2.2 Primitive Elements

Covlan’s ontology of primitive visual elements (Table 2) contains: rectangle,
circle, line, and set. The elements are represented as framess with slots
that can hold values. For example, a rectangle has a location, size, height,
width, and orientation. All elements have a location, which holds a value
representing an absolute location on an s-image (e.g. top, right).

The connection is a special element which we describe under primitive rela-
tions. The set is another special element. A set can contain any number of
instances of elements. Sets also have an orientation, the value of which
is one of the primitive directions (described below). An element instance

in the set is specified in the representation as the front, and another element

8



Primitive Visual Elements

Element name attributes

connection subject, object, angle, distance

rectangle location, size, height, width, orientation

circle location, size, height

line location, length, end-point1, end-point2, thickness

set location, orientation, front, middle
Table 2
Primitive elements.

is specified as the middle. The orientation is defined as an (imaginary) line
from the middle to the front in the direction specified in the orientation.

Sometimes a part of an element instance must be referenced. For example,
if a line touches the middle of another line, there must be some way to describe
the end of the first line and the middle of the next. To support this, in Covlan
different primitive elements have different kinds of areas such as middle and
end.

Lines have start and end points, as well as right-side and left-side

mid-points. The element instance’s names are related to the symbols nam-
ing these areas (e.g. line1-end-point with area-relations: has-end-point,
has-start-point, has-rightsidemiddle, and has-leftsidemiddle.)

Circles, squares, and rectangles have sides, which are related to element
instances with the following relations: has-side1 (the top), has-side2 (the
right side), has-side3 (the bottom), and has-side4 (the left side).

Table 3 shows some of the visual elements and their attribute values for the
first s-image in the fortress problem.

2.2.3 Qualitative Variables

Qualitative variables are symbols that can take a qualitative value for element
attributes or transformation arguments. They can be broken down into the
following types: angles, locations 1 , sizes, thicknesses, numbers, speeds,
directions, and lengths.

9



Fortress Problem Elements

Visual Object attributes value

Fortress looks-like: curve

location: center

Bottom-road looks-like: line

Right-road looks-like: line

Left-road looks-like: line

Top-road looks-like: line

Soldier-path looks-like: line

location: bottom-road

thickness: thick
Table 3
Primitive elements from fortress problem s-image 1.

Qualitative Variables

angles perpendicular-angle, right-angle-cw,

45-angle-cw, 45-angle-ccw,

right-angle-ccw

locations bottom, top, right, center, off-bottom

off-top, off-right, off-left

sizes small, medium, large

thicknesses thin, thick, very-thick

speeds slow, medium, fast

directions left, right, up, down

lengths short, medium, long
Table 4
Classification of Variables

Visual Relations

Visual Relations touching, above-below, right-of-left-of,

in-front-of-behind, off-s-image

Motion Relations rotating, not-rotating
Table 5
Primitive visual relations.

10



has−angle

has−distance

square1

square2

square1−−square2−−connection1

short−distance

right−angle−cw

is−subject−for−connection

is−object−for−connection

Fig. 6. A graphical representation of the relationships involved with a connection.
Square2 is a short distance to the right of square1. Right-angle-cw means that
the angle is a right angle in the clock-wise direction.

2.2.4 Primitive Relations

The class of primitive visual relations (shown in Table 5) describe how
certain visual elements relate to each other and the variables. Motion relations

(see Table 5) describe how element instances are moving in an s-image.
Rotation has the arguments speed and direction.

Many spatial relationships between primitive elements are represented with
connections. A connection is a primitive element with a name. Connections
are frames with two four-slots: subject, object, angle and distance, repre-
sented with is-subject-for-connection, is-object-for-connection, has-angle
and has-distance. These relations connect the connection name to distances
and angles, which are qualitative variables, as illustrated in Figure 6.
The object of the connection is distance away from the subject in the
direction of angle.

The distances are touching-distance, short-distance and long-distance.
The angles are perpendicular-angle (straight ahead), right-angle-cw (a
right angle in the clockwise direction, or to the right), 45-angle-cw (a forty-
five degree angle to the right), 45-angle-ccw (a forty-five degree angle in the
counter-clockwise direction, or to the left), and right-angle-ccw (a right an-
gle to the left). Figure 7 illustrates the different kinds of connections Covlan
can represent. Areas of element instances, as well as element instances

themselves can be connected.

2.2.5 Mappings between S-images

An s-image in the source can have an analogy between it and its correspond-
ing s-image in the target. Each analogy can have any number of analogical
mappings associated with it (determining which mapping is the best is the
mapping problem.) Each alignment between two element instances or areas
in a given mapping is called a map. 2

1 Relative locations, as opposed to absolute locations, are classified under
primitive visual relations.
2 A map is called a match hypothesis in the SME literature [10].

11



touching−distance

short−distance

short−distance

long−distance

long−distance

right−angle−cwright−angle−ccw

45−angle−ccw

perpendicular−angle

45−angle−cw

Fig. 7. Each of the fifteen black dots in the Figure represents a qualitative
connection area, with an angle and direction.

Similarly s-images next to each other in sequences have transform-connections.

These are necessary so Proteus can track how visual elements in a previous
s-image change in the next. A difference between analogies and transform-connections

are that there can be multiple analogical mappings for an analogy, but only
one mapping for a transform-connection. Transformations are attached to
a map between two element instances in sequential s-images. Thus, if a
rectangle changes into a circle, Proteus knows which rectangle in the
previous s-image turns into which circle in the next s-image.

Proteus represents the fortress case as a sequence of three s-images as il-
lustrated in Figure 4.) The first s-image is a representation of the original
fortress problem. It had n roads, represented as thick lines, radiating out from
the fortress, which was a curve in the center (curves are used to repre-
sent irregular shapes). Proteus represents the original soldier path as a thick
line on the bottom road. This s-image was connected to the second with a
decompose transformation, where the arguments were soldier-path1 for
the object and four for the number-of-resultants. The second s-image

shows the soldier-path1 decomposed into four thin lines, all still on the
bottom road. The lines are thinner to represent smaller groups.

Proteus represents the start state of the tumor problem as a single s-image.
The tumor itself is represented as a curve. The ray of radiation is a thick
line that passes through the bottom body part.

2.3 Retrieval of Source Cases

Proteus’ method for retrieval in visual analogies draws on two ideas from ear-
lier work on case retrieval. Firstly, following MAC/FAC [17], Proteus’s retrieval
method decomposes the retrieval task into two subtasks: reminding (or initial

12



recall), and selection. Secondly, following ACME [29], Proteus views case re-
trieval as a constraint satisfaction problem. Note that while MAC/FAC uses
structure-mapping [10] for the selecton task, ACME uses a relaxation pro-
cedure based on spreading-activation for the retrieval and mapping task as
a whole, though there is a complementary system called ARCS [39] which
employs much the same method for retrieval by weakening the structural con-
straints. In contrast, Proteus uses feature vector matching as the method for
the first task of reminding, and constraint satisfaction with backtracking for
the second task of selection.

The retrieval task is essentially one of matching objects (variables and con-
stants) in the target and the source under the constraints imposed by the
propositions in which they appear. An s-image can be viewed as a network
of relationships between visual elements, and so we can view the element

instances of the target s-image as variables, whose potential values are
element instances of all the source s-images in memory, and the links
between element instances in the target we can view as constraints that
must hold between the variables. Thus, each proposition imposes a constraint
between two variables in the s-image.

Treating the element-instances in the target as variables to be assigned val-
ues, the potential values are the element instances from the s-image de-
scriptions in memory, all of which are considered at once. That is, the method
is not performing a separate test on each potential source in memory, but,
rather, it is running a search procedure on the entire memory considered col-
lectively. The constraints on the values assigned to the variables (the target
elements) are precisely those imposed by the subgraph isomorphism prob-
lem: if elements A and B from the target are to be matched with elements

X and Y from memory, respectively, then, first, X and Y must be in the
same s-image; second, all relations that hold between A and B must also
hold between X and Y , respectively. If these constraints are met, then A can
be matched with X and B can be matched with Y . Here, the constraints are
binary (say, A is left of B—a relational constraint). The only exception is the
constraint that all values be from the same s-image, but this can be inferred
from the binary constraints.

2.3.1 Retrieval and Matching Process

The matching process works in three phases: initialization of domains, reduc-
tion of domains, and finding the matching, where matching means subgraph
isomorphism. The first phase initializes the target domains to sets of values
that are involved in the same kinds of relations. The second phase reduces
these domains by eliminating values that are not all in the same s-image.
These two phases reduce the selection of values for each variable. The third

13



function InitDomains

Input:
1. Target s-image and Covlan description
2. The memory: memory

Output: 1. A list of potential source elements for each target element

Procedure:

1: Let Nodes be a list of all the nodes in the target
2: for all w ∈ Nodes do
3: InitDomain[w]← {}
4: Let Terms be a list of all the terms in which w appears
5: MappedNodes← none
6: for all term ∈ Terms do
7: Let Candidates be a list of all nodes from memory incident on

a term whose label matches term (either incoming or outgoing
as appropriate)

8: if MappedNodes = none then
9: MappedNodes← Candidates

10: else
11: MappedNodes← Candidates ∩MappedNodes
12: InitDomain[w]←MappedNodes
13: return InitDomain

Table 6
Algorithm for InitDomains, which initializes the domains of the target variables—
that is, a list of potential source element instances for each target element
instance.

phase actually computes the isomorphism using constraint satisfaction and
backtracking.

The first phase (initialize domains) works by finding element instances in
memory that “look similar” to the target elements: if a target element A has,
say, three relations whose labels are R, S, and T , then the algorithm builds
a list of all elements in memory—across all the potential source s-images—
that have at least three relations with labels R, S, and T . We call this the
“signature” of an element. The second phase (reduce domains) works by en-
suring that the set of s-images that are represented in the domain of (list of
values for) each variable is the same. This serves to eliminate any value from
the domain of any variable that does not come from a s-image represented in
every other variable’s domain.

The first stage applies two heuristics to the s-images in memory: (1) prune
any individual element (as opposed to entire s-images) that does not have
the same signature as the corresponding target element, and (2) prune any
propositions whose associated s-images are not represented in every target

14



function ReduceDomains

Input:

1. The memory: memory
2. List of all elements in the target s-image (Nodes)
3. Initial target domains (list of potential elements from

memory for each target element)

Output: 1. Reduced target domains

Procedure:

1: InitDomain← InitDomains()
2: Determine the associated s-images for each element of each list

in InitDomains
3: Let ReferenceList be the intersection across all of these lists
4: for all w ∈ Nodes do
5: Domain[w]← {}
6: CurrentList← {}
7: for all i ∈ InitDomain[w] do
8: if the document id of i is in ReferenceList then
9: Add i to CurrentList

10: Domain[w]← CurrentList
11: return Domain

Table 7
Algorithm for ReduceDomains, which eliminates from the domains any element
instances from s-images not represented by at least one element instance in
every domain. Each variable domain is a list of elements, and each element is labelled
by the s-image that contains it (in line 2, above).

element’s domain. The latter enforces subgraph isomorphism. It is important
to note that these are both logically implied by the similarity metric that the
last phase, described below, implements. It would be an interesting experiment
to look at other heuristics that prune out mappings that might have otherwise
been returned by the last phase. These two algorithms appear in tables 6 and
7.

The last phase of the retrieval process (find matchings) is the most important
step. The basic procedure is one that generates matchings, checking them
for consistency as it goes, and backtracking when necessary. The test, here,
is actual subgraph isomorphism: if A is related to B in the target, then the
relations (links, edges) between any element that A maps to and and any
element that B maps to must include at least those that held between A and
B. This algorithm returns all valid mappings. The idea is that the first two
phases have restricted the set of possible mappings to search through so that
there are not nearly as many, now, as there would have been if a depth-first
search without heuristics had been done. This algorithm appears in table 8,
with a test performed at each attempt to expand the current mapping given

15



function FindMatchings

Input:

1. Target s-image
2. List of all elements in the target s-image (Nodes)
3. Reduced target domains (Domains)
4. The memory

Output: 1. List of all mappings from source to target

Procedure:

1: Domain← ReduceDomains()
2: n← Length(Nodes)
3: Let Mappings be nil (Mappings will be a list of lists, each one an

complete mapping)
4: Open ← {(nil, nil)} (Open is a stack of all current partial map-

pings)
5: while Open 6= {} do
6: (w, current)← Pop(Open)
7: w is the current target element from Nodes, or nil of one hasn’t

been selected yet, and current is the current partial mapping
8: w ← GetNextElement(Nodes,w)
9: for all j ∈ Domain[w] do

10: if Consistent(w,j, current) then
11: new ← Append(current, w = j)
12: if w = n then
13: Push(new,Mappings)
14: else
15: Push((w, new), Open)
16: Each item (list) in Mappings now corresponds to a matching from

the target to some document in memory.
17: return Mappings

Table 8
The algorithm for FindMatchings, which returns mappings for all source s-images in
memory for which the target s-image is a subgraph. Note that, above, {(nil, nil)},
the initial value of Open, is not the empty set {}; it has one element, an ordered
pair of nils. The first item in the pair is the current target element (nil at the start,
indicating one hasn’t been chosen yet), and the second is the current mapping (nil at
the start, indicating an empty mapping, which is added to as the search progresses)

in table 9.

2.3.2 Mapping Between Source and Target Cases

For the sake of retrieval and mapping, Proteus first makes an index of all the
chunks in memory (a chunk is simply one “unit” of the representation, such as

16



function Consistent

Input:
1. A potential source element j (candidate map)
2. The current (partial) mapping
3. Target s-image

Output: 1. True or false

Procedure:

1: if current = nil then
2: return True
3: for all i ∈ {1, . . . , w − 1} do
4: if Not all relations between target elements i and w can be

found among the relations between current[i] and j then
5: return False

Table 9
Algorithm for Consistent, which attempts to determine if the proposed map is con-
sistent with the current partial mapping.

a relation between two specific element instances, or an attribute-value pair
together with the associated element) in a discrimination tree. This is prior
to the calling of InitDomains, above (table 6), so that every access to mem-
ory in the above algorithms (InitDomains, ReduceDomains, and FindMatchings,
tables 6, 7, and 8). Since only initial problem frames should be retrieved, Pro-
teus looks for any s-image which is the first of a finished problem-solution
sequence, and only indexes those chunks from each such s-image in memory.
This prevents, for example, the tumor-problem s-image from mapping to
the fortress-solution s-image, which would be useless: we want it to map
to the fortress-problem s-image, the first one in the sequence, rather than
the last one.

Note that the visual representatins in Proteus capture only structural con-
straints, e.g, shapes of visual elements, and spatial relations among the el-
ements and between the components of an element. The representations do
not explicitly express causal and functional knowledge. Within this context,
Proteus’ method for mapping between a source case and the target problem
employs two key constraints. First, members of sets are not mapped, since
they are not employed in transfer (the notion of a set was introduced pre-
cisely to facilitate n-to-m mappings). Thus, any element instance on the
left-hand side of an in-set relation is pruned from the input to the map-
ping task (that is, when the index is getting built). Second, attribute values
(e.g. has-location center) and qualitative variables (e.g. has-size small)
are not mapped, only element instances, and so they are pruned from the
input as well. The alternative to this would be to allow them to be mapped,
but then to prune those maps from any mappings returned; however, attribute

17



function RetrieveSourceMappings

Input:
1. A target s-image
2. memory

Output:
1. A list of mappings from all matching source s-images

to the target

Procedure:

1: index← empty dtree
2: problemFrames← all source s-images that are the first s-image

of a solved problem
3: sourceRels ← all chunks in problemFrames that do not involve

literals and that do not involve members of sets
4: for all c ∈ all chunks in problemFrames do
5: Index(c,index)
6: targetRels ← target s-image chunks that do not involve

literals or members of sets length(sNodes))
7: targetNodes← target element instances from targetRels
8: mappings← findMatchings(sourceRels, targetNodes, targetRels,

domains)
9: return mappings

Table 10
Algorithm for RetrieveSourceMappings, which searches memory for s-images of the
problem frames of solved problems for any that match the given target s-image,
returning a list of mappings.

values may or may not match between source and target, and so they may
violate the constraints of subgraph isomorphism, which were introduced as
constraints between elements, not between attribute values. It is thus more
useful to prune them out at the start.

The algorithm in shown in table 10. Note that this mapping algorithm gen-
erates multiple mappings instead of a single mapping between a single source
and target: it returns all mappings from all sources that satisfy the given
constraints. This is because the mapping algorithm uses only structural con-
straints present in the visual representation of the source and target s-images.
It does not also use semantic and pragmatic constraints, such as the goal of
the problem solving in the source and target problems, because causal and
functional knowledge is not explicitly represented in the visual representation.
Therefore, Proteus arbitrarily selects among the multiple mappings, transfers
the problem-solving procedure to the target, and evaluates the transferred
solution. If the evaluation fails, then Proteus returns to the output of the
mapping task, selects a different mapping and repeats the process, until a
mapping succeeds or it runs out of mappings to try.

18



In the fortress/tumor problem, the “correct” mapping maps the set of roads
to the set of body parts, the fortress to the tumor, and the army to the
ray. When Proteus addresses this problem, the heuristics mentioned above
prune out the sets of roads and body parts, as well as the shapes and sizes
and positions of all the element instances. Thus, the only factors left to
influence the mappings were the the element-instances themselves. The
element-instances are Fortress, Tumor, Soldier-Path, Ray, Set1 (the set
of roads around the fortress), and Set2 (the set of body parts surrounding the
tumor). Proteus produced only one mapping:

(Fortress maps-to Tumor)

(Soldier-Path maps-to Ray)

(Set1 maps-to Set2)

In this case, the relationship between the soldier-path and the fortress (namely,
that the soldier-path terminates at the fortress) mapped onto the analogous
relationship between the ray and the tumor (that the ray terminates at the
tumor). This determined the mapping exactly, and no other mappings were
even possible under this constraint.

On the other hand, for some of the other examples, a dozen or more mappings
were returned. In particular, we discovered an interesting conflict between the
needs of retrieval and mapping, and the needs of transfer: for transfer, if only
some of the source elements map onto only some of the target elements, trans-
fer can still be possible if the knowledge being transferred does not conflict
with anything else in the target. However, for retrieval and mapping, it is
straightforward to find all sources in memory for which the given target is
a subgraph (viewing the target representation as a graph), but it is not as
straightforward to find all sources for which some part of the target may map
to some part of the source. Some of the examples involved mapping of the
source onto a target which involved other elements in other relationships, and
so no mapping could be found using these methods, and the retrieval failed.

2.4 Transfer of the Problem-Solving Procedure

The transfer task takes as input a target problem, represented as a single
s-image, an source case from memory, represented as a series of s-images

connected with transformations, and sets of possible mappings between the
target and the first s-image of the retrieved source. Proteus transfers solu-
tions from a source to the target and the evaluation step checks the quality of
the transferred solutions. Transfer stops when a satisfactory solution is found.

Proteus adapts and transfers each transformation in the source problem to
the target. The transformations are transferred literally and the arguments

19



of those transformations can be adapted. For example, the transformation
decompose is used to turn a primitive element instance into some arbitrary
number of resultants, taken as an argument. An argument of a transformation

can be an instance of one of three cases. Firstly, the argument can be a lit-
eral, like the number four or the location bottom. Literals are transferred
unchanged to the target.

Secondly, the argument could be a element instance member of the source
s-image. In this case, the transfer procedure operates on the analogous element
in the target s-image. For example, in the first transformation in the fortress
story, the decomposed source soldier path gets adapted to the ray in the
target tumor problem. Thirdly, the argument can be a function.

2.4.1 Transfer Method

We first describe Proteus’s transfer method informally, with reference to Fig-
ure 4.

(1) Identify the first s-images of the target and source cases. These
are the current source and target s-images.

(2) Identify the transformations and their associated arguments in
the current s-image of the source case. This step finds out how the
source case gets from its current s-image to the next s-image. In the
fortress/tumor example, the transformation is decompose, with four as
the number-of-resultants argument (not shown).

(3) Identify the objects of the transformations. The object of the trans-
formation is what object, if any, the transformation acts upon. For the
decompose transformation, the object is the soldier-path1 (the thick
arrow in the top left s-image in Figure 4.)

(4) Identify the corresponding objects in the target problem. Ray1
(the thick arrow in the bottom left s-image) is the corresponding com-
ponent of the source case’s soldier-path1, as specified by the mapping

between the current source and target s-images (not shown). A single
object can be mapped to any number of other objects 3 . If the object in
question is mapped to more than one other object in the target, then the
same transformation is applied to all of them in the next step.

(5) Apply the transformation with the arguments to the target
problem component. A new s-image is generated for the target prob-
lem (bottom middle) to record the effects of the transformation. The
decompose transformation is applied to the ray1, with the argument
four. The result can be seen in the bottom middle s-image in Figure 4.
The new rays are created for this s-image. Adaptation of the arguments

3 Though Proteus’s mapping generator will not do this, it is possible for mappings
associated with transform-connections.

20



can happen in three ways, as described above: If the argument is an ele-
ment of the source s-image, then its analog is found. If the argument is a
function, then the function is run (note that the function itself may
have arguments which follow the same adaptation rules as transformation
arguments). Otherwise the arguments are transferred literally.

(6) Map the original objects in the target to the new objects in the
target. A transform-connection and mapping are created between
the target problem s-image and the new s-image (not shown). Maps

are created between the corresponding objects. In this example it would
mean a map between ray1 in the left bottom s-image and the four rays
in the second bottom s-image. A map is also created between the ray1 to
the set of thinner rays. A mapping from the correspondences of the first
s-image enables Proteus to automatically generate updated mappings

for the subsequent s-images.
(7) Map the new objects of the target case to the corresponding ob-

jects in the source case. Here the rays of the second target s-image are
mapped to soldier paths in the second source s-image. This step is nec-
essary for the later iterations (i.e. going on to another transformation

and s-image). Otherwise the reasoner would have no way of knowing
on which parts of the target s-image the later transformations would
operate.

(8) Check to see if there are any more source s-images. If there are
not, exit, and the solution is transferred. If there are further s-images in
the source case, set the current s-image equal to the next s-image and
go to step 1.

Figure 8 shows the third s-image in the squence generated for the tumor
problem by the above method.

2.4.2 Dynamic Generation of Intermediate Mappings

Step 7 in Proteus’ transfer method described in the previous subsection gen-
erates a new mapping between the newly generated intermediate knowledge
state in the target problem and the corresponding intermediate state in the
source case. This is because the decomposet transformation preceding this
state may create new visual elements in the state. Since this need for dynamic
generation of mappings is a new finding of our work, in this subsection we
discuss it in some detail.

Consider a hypothetical problem in which two people need the same resource,
but only one has access to it. This might be represented visually as illustrated
in Figure 9, where the two circles represent people and the triangle represents
the one resource. The triangle’s proximity to one of the circles might represent
which person has possession of the resource.

21



tumor−s−image3

tumor

fourth−ray

top−body−area

right−body−area

first−ray

second−ray

third−ray

left−body−area

bottom−body−area

line circle

centerleftrightbottomtop

thin

curve

has

looks−like

thickness

has−element

has−location

Fig. 8. This Figure shows part of the third s-image in procedure for the tumor
problem. Each relationship is represented as an arrow. The start and ends of the
arrows are the ideas connected by the relation in the proposition. The boxed text
in the middle of the arrow is the Relation. Each string of unboxed text is an
element, element instance, or a miscellaneous slot value.

Figure 10 illustrates a problem-solving state in the transfer of a procedure for
distributing a resource among people from a hypothetical source case to the
target problem. The sequence of s-images at the top of Figure 10 illustrates
the procedure for distributon of some other resource, depicted as a sqaure, in
the source case: the resource is first decomposed into smaller shares, depicted
by smaller squares, and then moved to the vicinity of the people. The target
problem of Figure 9 is shown in the bottom left of Figure 10. The dotted
curves at on the left side in Figure 10 show the initial mappings between the

22



Initial Target Knowledge State 

Fig. 9. A hypothetical target problem. The traingle repersents some resource. Circles
represent two people both of whom a share of the resource. The distance between
the circles and the triangle indicates current possesion of the resource.

decompose move

move?

decompose

mapping

Source Knowlege State 1

Target Knowledge State 1

Source Knowledge State 2 Source Knowledge State 3

Target Knowledge State 2

Fig. 10. This figure illustrates a state of problem solving during transfer of a prob-
lem-solving procedure from a source case to the hypothetical problem. In this state,
the decompose transformation has just been transferred from the source case and
applied to the first s-image in the target problem. Th application of this transform-
tion creates a new element in the second s-image of the target case.

s-image representing the target problem and the first s-image in the source
case.

Now consider what happens when the problem-solving procedure is transferred
from the source case to the target problem. First, the decompose transformation

in the source case is transferred to the target and applied to its s-image.
This results in the generation of an intermediate knowledge state containing
two smaller triangles. The difficulty arises when the next transformation,
move, is transferred from the source case and applied to the newly generated
s-image in the target problem: what element in the s-image should move ap-
ply to? Since the small triangles in the target are the creation of the previous
transformation, the initial mapping between the source and the target does
not have any mapping between the small triangles in the target and the small
squares in the source!

23



Therefore, it follows that if and when a transformation in the target case
creates a new object, there is a need to dynamically generate a new mapping
between the newly created intermediate knowledge state in the target and
the corresponding intermediate knowledge state in the source case. Note that
although we have described this problem in the context of visual analogy
in problem solving, it appears to be independent of the type of knowledge;
instead, it seems like a characteristic of all analogical problem solving in which
new objects are created.

2.4.3 Transfer Algorithm

Table 11 contains a more formal specification of the main algorithm for the
transfer task. The unspecified functions used in this algorithm (e.g., adapt-
arguments, carry-over-unchanged-relationships) are described in the following
subsections.

2.4.4 Adapt-arguments

When an argument needs to be adapted to the target problem, Proteus deter-
mines whether it is a literal, a function, or a component of an s-image.

Literals are returned verbatim. If the argument is a function (e.g. the number
of people in a group) then Proteus applies the same function to the analogous
group in the target and returns that value. If the argument is a component,
then Proteus returns the analogous object in the target. The algorithm apears
in table 12.

In the fortress/tumor problem, the adapt-arguments algorithm takes in the
symbols FOUR and FORTRESS-PROBLEM-TUMOR-PROBLEM-MAPPING1. Since FOUR
is in Galatea’s list of literals, it executes the “literal” case and returns the
symbol as is: FOUR.

Since this case does not occur in the fortress/tumor problem, we will use the
cake/pizza example to describe it. The reasoner needs to feed six people with
one Sicilian slice sheet pizza. An analog in memory of cutting a sheet cake
for four people is used to generate a solution. Transfer is still difficult because
somehow the Four in the cake analog must be adapted to the number Six

in the pizza analog. Knowing how many pieces into which to cut the cake or
pizza depends on the number of people in each problem. Some notion of count
is needed. The use of functions as arguments to transformations addresses
this problem. The cake analog is represented with a function that counts the
number of people as its argument for the decompose transformation. This
function has an argument of its own, namely the set of cake eaters, which dur-
ing adaptation adapts into the set of pizza eaters. When the transformation
is applied to the pizza, it counts the members of the set of people in the pizza

24



function main-algorithm

Input:
1. Source
2. Target problem
3. Vertical mapping between source and target

Output:

1. A set of new target knowledge states
2. Vertical mappings between corresponding source and target
states
3. Horizontal mappings between successive target states
4. Transformations connecting successive target states

Procedure

1: while more-source-states(goal-conditions, memory) do
2: current-s-image ← get-next-target-s-image(target problem,

current-s-image)
3: current-source-s-image ← get-next-source-s-image(source,

current-source-s-image)
4: current-transformation ← get-transformation(current-s-image)
5: current-arguments ← get-arguments(current-source-s-image)
6: source-objects-of-transformation ← get-target-object-of-

trans(current-source-s-image)
7: current-vertical-mapping ← get-mapping(current-target-s-

image, current-source-s-image)
8: target-object-of-transformation ← get-source-object-of-

transformation(current-vertical-mapping, source-objects-of-
transformation)

9: target-arguments ← adapt-arguments(get-arguments(current-
source-s-image, current-source-s-image))

10: memory ← memory + apply-transformation(current-
transformation, target-object-of-transformation, target-
arguments)

11: memory ← memory + create-horizontal-mapping(current-
target-s-image, get-next-target-s-image)

12: current-target-s-image ← get-next-target-s-image
13: current-source-s-image ← get-next-source-s-image
14: memory ← memory + carry-over-unchanged-

relationships(applied-transformation)
15: memory ← memory + create-vertical-mapping(current-target-

s-image, current-source-s-image)

Table 11
Main algorithm

25



function adapt-arguments

Input:
1. argument
2. mapping

Output: 1. an adapted argument.

Procedure:

1: if literal? argument then
2: return argument
3: else if function? argument then
4: return calculate-function(argument)
5: else if component? argument then
6: return (get-analogous-component(argument, mapping))

Table 12
Algorithm for adapt-arguments

problem (which results in six). Decompose produces six pieces of pizza in the
next s-image.

2.4.5 Carry-over-unchanged-relationships

In table 13 is a description of the carry-over-unchanged-relationships

function. The get-analogous-chunks sub-function constructs returns chunks
that are identical to the input chunks, except that the symbols that have maps
in the input mapping are replaced with those symbols they are associated
with in those maps. The vertical map relationships are carried over as well,
constituting the vertical maps for unchanged components.

2.4.6 Creation-of-horizontal-maps-between-changed-components

The creation-of-horizontal-maps-between-changed-components (see ta-
ble 14) is embedded in the code for each of the transformations. The transformation
results are obtained from running the transformation. The target-objects-of-transformation
are known because they are the input to the transformation. The two lists
are put in alphabetical order and maps are created between each nth list ob-
ject. These are maps within a procedure, showing what elements in earlier
s-images turn into what elements in later s-images.

Similarly, creation-of-horizontal-maps-between-unchanged-components
(see table 15) makes maps between old objects (the objects in the old-s-image
and new objects (from the current-s-image, minus the objects created by
the transformation), alphabetizes them, and creates maps between the nth
item in each list.

26



function carry-over-unchanged-relationships

Input:

1. The Memory: memory
2. The horizontal mapping: h-mapping
3. Transformation
4. Previous-s-image

Output: 1. Analogous chunks.

Procedure:

1: new-chunks ← get-chunks(run-transformation(transformation))
2: old-analogous-chunks ← get-analogous-chunks(new-chunks, h-

mapping)
3: old-chunks ← get-all-chunks(previous-s-image)
4: chunks-to-transfer ← old-chunks − old-analogous-chunks
5: memory ← memory + create-analogous-chunks(chunks-to-

transfer, h-mapping)

Table 13
Algorithm for carrying over unchanged relationships

function creation-of-horizontal-maps-between-changed-components

Input:
1. Transformation results
2. Target-objects-of-transformation

Output: 1. New horizontal maps between the current and next s-image.

Procedure:

1: post-transform-components ← get-chunks(run-
transformation(transformation))

2: memory ← memory + create-maps(post-transform-components,
target-objects-of-transformation)

Table 14
Algorithm for creation of horizontal maps between changed components

2.4.7 Creation-of-vertical-maps-between-changed-components

The algorithm for creating vertical maps between changed components (see
table 16) takes as input the transformation results in the source and target,
alphabetizes them, and creates maps between the nth item in each list.

2.5 Evaluation of the Transferred Solution

We have tried without sucesss to come up with a method for fully automated
run-time evaluation of the transferred solution to the target problem using

27



function creation-of-horizontal-maps-between-unchanged-component

Input:

1. Transformation results
2. Old-s-image
3. Current-s-image
4. Post-transform-components
5. Old-components
6. Current-components

Output: 1. new horizontal maps between the current and next s-image.

Procedure:

1: old-components ← get-all-components(old-s-image) − target-
objects-of-transformation

2: current-components ← get-all-components(current-s-image) −
post-transform-components

3: memory ← memory + create-maps(old-components, current-
components)

Table 15
Algorithm for creation of horizontal maps between unchanged components.

function creation-of-vertical-maps-between-changed-components

Input:

1. Target transformation results
2. Source transformation results
3. New-target-components
4. New-source-components

Output: 1. new vertical maps between the current source and
s-images.

Procedure:

1: new-target-components ← target transformation results
2: new-source-components ← source transformation results
3: memory ← memory + create-maps(new-target-components, new-

source-components)

Table 16
Algorithm for creation of vertical maps between changed components.

only visual knowledge. Thus, we suggest that the evaluation subtask of visual
analogy in problem solving necessarily requires explicitly represented causal
and functional knowledge. Of course, in some cases, it might be possible to
derive the causal and functional knowledge from the visual representation but
that is beyond the scope of the Proteus project.

Thus, Proteus currently uses precompiled knowledge for evaluating the can-

28



didate solution to the target problem. As Proteus’ designers, we handcrafted
the propositions that a correct solution should have generated and compiled
them into the evaluation task. When Proteus proposes a candidate solution, it
compares the propositions generated by the candudate with the propositions
generated by the correct solution. If the candidate solution fails, then Proteus
returns to the output of retrieval task, and selects a different source case (if
one is available) and attempts to transfer its procedure to the target problem.

3 Evaluation of Proteus

Proteus is an integration of two systems: Geminus [43] and Galatea [5,7,6].
The Geminus subsystem of Proteus is responsible for the retrieval, mapping
and storage tasks, the Galatea subsystem is responsible for the transfer and
evaluation tasks, including dynamic generation of mappings between the inter-
mediate knowlede states in the source and target cases. Some of the evaluation
of Proteus has been in the context of the Geminus and Galatea subsystems.

Uniformity: Proteus uses an uniform knowledge representation language,
Covlan, for all tasks and subtasks of visual analogy in problem solving.

Generality: We have validated different parts of Proteus for a large range
of problems. In particular, we have validated Geminus’ retrieval method for
a variety of 2-D, vector graphic, line drawings. Similarly, we have validated
Galatea’s transfer method for problems ranging in complexity from cutting
a simple circular shape (e.g., a pizza) in analogy to cutting a similar shape
(e.g., a cake) into smaller parts, to analogy-based design of a weed-trimmer,
to a historical case study of James Clerk Maxwell’s reasoning about vortices
in electromagnetic fields [7]. We have validated Proteus itself for both the
pizza-cake problem and the fortress-tumor peoblem.

The choice of the fortress/tumor problem as a running example in this paper
has been deliberate: The fortress/tumor problem is often considered to be a
cannonical example in the literature on analogy (e.g., [21]) and because earlier
computational models of the fortress/tumor classical example have relied on
the use of (non-visual) causal and functional knowledge [30]. Thus, success-
ful execution of Proteus on the fortress/tumor problem partly confirms our
initial hypothesis: visual knowledge alone is sufficient for analogical transfer
of problem-solving procedures in some task domains. It also leads to a re-
finement of the initial hypothesis: while visual knowledge is sufficient for the
retrieval, mapping, transfer and storage subtasks of analogy, the evaluation
subtask appears to require (non-visual) causal and functional knowledge.

29



Efficiency: We have conducted efficiency experiments with Geminus. In our
experiments, the long-term memory contained 42 source cases; the number of
visual elements in the indexical s-images of the source cases ranged from 3
to over 50, with an average about 12’ and the number of propositions in se-
mantic network representing the s-images ranged from a couple of dozen to
over eight thousand. The experiments were conducted with 21 target prob-
lems; each of the s-images in the targer problems contains 2 to 5 visual
elements and up to several dozen propositions. Running on a desktop work-
statation, Geminus retrieved the relevant s-images in about 9.32 seconds on
average across all 21 target s-images), doing an average of about 1.49 million
memory accesses (to the index of propositions across all the source s-images)
per retrieval. Even in the worst-case (characterized by the size of the tar-
get s-image, Geminus took under a minute to retrieve the relevant source
s-images.

Recall that following MAC/FAC [17] the Geminus decomposes the retrieval
task into two subtasks: reminding and selection. Recall also that following
ACME [31], Geminus uses a constraint-satisfaction method for the selection
task. Ablation experiments with Gemimus [43], in which we removed the re-
minding subtask of the retrieval task and performed retrieval based solely on
contraint satisfaction, revealed no significant degradation in its performance.
This leads us to the following conjecture about case retrieval in general: when
constraint-satisfaction is used for selection, there may be little need for re-
minding using feature vectors. This conjecture needs further examination.

Cognitive Modeling: We have used Galatea to model the input-output
behavior of human subjects engaged in analogy-based design [6]. In these
experiments [3], human subjects were given a source case of a design of the
entrance to a clean-air laboratory, where the problem was articulated in text
and the solution was expressed both in text and in a drawing. The source case
also contained a problem-solving procedure articulated in text form, which
converted an entrance with a single door to a vestibule with double doors. In
the target problem, which was expressed in text form, the subjects were asked
to draw the design a portable weed-trimmer in analogy to the entrance to the
clean-air laboratory. We then used Galatea to solve exactly the same target
problem with exactly the same source case, except that in Galatea both the
source case and the target problem were expressed only visually. We found
that Galatea successfully solved the above problem.

For four of the human subjects in the above study, we conducted an addi-
tional experiment with Galatea. We ran Galatea under different initial knowl-
edge conditions, but without any change to its computational process, its
knowledge representation language, or its algorithms. We found that by sim-
ply changing the intial knowledge conditions, we could make Galatea replicate

30



ACME
IAM

LISA

Larkin & Simon
Narayanan et al.

NIAL
WHISPER
GeoRep
FROB

REBUILDER
FABEL
DIVA
JUXTA
MAGI
PAN
ANALOGY
LetterSpirit

I−SME

Analogical
Reasoning

Visual Reasoning

Proteus

Winston

Problem Sovling

PI
CHEF
Prodigy

ToRQUE

SME

Fig. 11. Proteus lies at the intersection of problem solving, analogical reasoning
and visual reasoning. This Figure depicts its relationshp with other theories and
systems.

about half of the features in the drawings made by the four human subjects.
The other half, which related to numerical dimensions and causal processes,
however are beyond Galatea. this paper no part of Proteus is proposed as
a cognitive model. The Galatea section simply replicates some elements in
the input-output behavior of human subjects engaged in analogy-based de-
sign. The above experiments however indicate the range of problems it can
address. Determining whether the level of abstraction of Proteus/Galatea’s vi-
sual knowledge is consistent with that of human designers requires additional
research.

4 Related Work

Figure 11 indicates that Proteus lies at the intersection of problem solving,
analogical reasoning and visual reasoning: at the task level, it addresses prob-
lem solving; at the method level, it uses analogies to solve problems; and in
terms of knowledge, it uses only visual knowledge. The Figure also shows
where related theories and systems lie on the same Venn diagram.

31



4.1 Analogical Reasoning

As we mentioned earlier, Proteus’ decomposition of the retrieval task into
feature-based reminding and structure-based selection follows MAC/FAC [17].
However, while MAC/FAC uses structure-mapping for the selection task, Pro-
teus uses constraint satisfaction with backtracking. As we noted earlier, the
experiments with the Geminus subsystem of Proteus indicate that the two-
stage decomposition of the retrieval task provides little computational benefit
over just one-stage retrieval based on constraint satisfaction [43] .

The Structure-Mapping Engine [10] is based on cognitive model of Structure-
Mapping [20]. It constrains the mapping problem with several rules including
the systematicity principle, which holds that higher-order (more nested) rela-
tional similarities are preferred over lower-order (less nested) similarities. SME
finds many possible mappings between a source and a target, then evaluates
them according to the map rules. SME however neither provides a content ac-
count of visual analogies, nor does it address problem solving, i.e., it transfers
relations, not procedures.

I-SME [16] and the Incremental Analogy Machine (IAM) [33] are incremental
mappers. An incremental mapper generates a mapping as objects in a given
case are introduced to the mapper one at a time. Proteus does incremental
mapping of a different kind and at a different stage of processing: if and when
an operation creates a new object during transfer of a problem-solving proce-
dure it dynamically generates new mappings for the newly created objects.

As we mentioned earlier, Proteus’ view of retrieval as a constraint satisfaction
problem follows that of ACME [31]. ACME (for Analogical Constraint Map-
ping Engine) uses structural, semantic, and pragmatic constraints for map-
ping. Structure, in this sense, does not necessarily mean physical appearance,
but the nature of the representation: elements are structurally similar if they
share the same relational structure with other elements. Semantic similarity
refers to elements are either identical symbols or share predicates (e.g. a com-
mon superordinate). Pragmatic constraints pertain to the relative importance
of some propositions in the representation given the goals of the agent. The
mapping is generated as a result of a constraint-satisfaction spreading activa-
tion network. Transfer in ACME involves transferring relations and postulat-
ing new elements from the source analog. ACME neither provides a content
account of visual analogy, nor does it address problem solving, i.e., it transfers
facts, not procedures.

LISA [32] is cognitive model of analogical mapping. Propositions are made
up of units spread activation to each other. Arguments of propositions fire in
synchrony with the case roles to which they are bound, and out of synchrony

32



with other case roles and arguments. Through spreading activation, the best
map is found.

Winston [42] describes an analogical mapper based on content account of its
domain (understanding political stories). The content account is based on
causality and functionality. The mapper generate all possible mappings, and
then ranks them. While Proteus’ content and process accounts are very dif-
ferent from that of Winston, like Winston’s work, Proteus too emphasizes the
importance of interaction between knowledge content and reasoning processes.

4.2 Analogical Problem Solving

CHEF [28] is a case-based reasoner that adapts cooking recipies from a source
to a target. CHEF uses non-visual causal and functional knowledge. Further,
it neither represents intermediate knowledge states, nor transfers procedures
that create new objects.

The Derivational Analogy theory, [41,40,38] implemented in the Prodigy sys-
tem, analogically transfers problem-solving procedures from source cases to
target problems. It uses traces of problem solving, called derivations, for en-
abling the transfer. Derivations are scripts of the steps of problem solving,
which contain justifications for why the specific steps in problem solving were
chosen over others. Prodigy also allows for adaptation of the transferred pro-
cedure. Like CHEF, Prodigy too uses non-visual causal and functional knowl-
edge. Further, in Prodigy, the intermediate knowledge states are not explicitly
represented or saved in the case memory. Instead, a stored case contains only
the record of the changes made to the states, which allows the knowledge
states to be inferred. In contrast, Proteus explicitly represents intermediate
knowledge and stores them in the case memory. Furthemore, whenever an
operation in the transferred procedure creates new objects, Proteus dynam-
ically generates new mapping between the intermediate knowledge states in
the target and the source case. Prodigy is able to avoid generation of these
intermediate mappings because the problems with which it deals do not have
procedures that create new objects.

The Process of Induction (PI) model [30] is the only implemented compu-
tational model, other than Proteus, that solves the fortress/tumor problem.
However, unilke Proteus, it uses non-visual causal and functional knowledge.
PI does not represent intermediate knowledge states or generate new map-
pings between them. This is because it does not do analogical transfer in the
usual sense of the term. Instead, it first uses a production system to solve the
fortress problem. Once PI solves the tumor problem, it induces an abstract
schema that works as a single rule that aapplies to both problems.

33



The ToRQUE2 system [25–27] uses a taxonomy of generic structural trans-
formations that can be applied to physical systems . These transformations
were found to be useful in modeling protocols of human subjects solving a
problem dealing with spring systems. ToRQUE2’s structural representations
are different from Proteus’ visual representations: the structural representa-
tions describe a system’s physical composition but typically include only the
information directly relevant for predicting the causal behaviors of the system.
Structural knowledge, like a schematic, shows the components of the system
and the connections among them but leaves out other visual information, such
as what a component wire looks like, which side of a pump is up, etc.

4.3 Visual Knowledge and Reasoning

Larkin and Simon [34] describe a system that reasons about physical systems
such as pulley systems. In their representation, objects are not represented
explicitly, but implicitly through locations: when one location is attended to,
all information there is attended to. To answer a question about a pulley
system, the reasoner uses some non-visual causal knowledge of physics along
with the visual knowledge.

The NIAL system [23] distinguishes between depictive and descriptive repre-
sentations (corresponding to bitmape and propositional representations), as
well as a distinction between visual and spatial (corresponding to where some-
thing is and what something is). The descriptive representation is stored in
memory, and the depictive is generated in a working memory when needed.

WHISPER [18] is a problem-solving system that can request observations
from and make changes to depictive diagrams of a blocks world. It knows
about stability and falling objects. It can visualize something rotating in the
diagram and determine when it will hit another object. The system’s goal is
to move all blocks until they are stable. It moves them, then simulates how
they will act (in a bitmap “retina”) for evaluation. While WHISPER uses
visual knowledge for many of its tasks, it uses non-visual causal knowledge for
evaluation by simulation.

The FROB system [15] uses Qualitative Spatial Reasoning (QSR) [14] to rea-
son about physical systems, e.g., figuring out the paths of balls on a landscape
and whether will collide. In QSR, an agent needs both a metric diagram repre-
sentation and a place vocabulary representation. A metric diagram shows the
quantitative aspects of the system, like sizes of objects expressed in numbers.
The place vocabulary is a qualitative representation of location and shapes
of objects. A place is a region of space where some important property (e.g.
being in contact with something) is constant.

34



GeoRep [13] takes in 2-D line drawings and outputs the visual relations in it.
First it uses a LLRD (low-level relational describer) module to aggregate vi-
sual primitives. Its visual primitives are: line segments, circular arcs, circles, el-
lipses, splines, and text strings. It finds relations of the following kinds: group-
ing, proximity detection, reference frame relations, parallel lines, connection
relations, polygon and polyline detection, interval relations, and boundary de-
scriptions. Then the HLRD (high-level relational describer) finds higher-level,
more domain-specific primitives and relations. GeoRep’s content account is at
the low level – the higher level account is left up to the modeler. Although
though the reasoning goal in Proteus is very different from that of GeoRep,
its knowledge representation language, Covlan, has considerable overlap with
GeoRep’s vocabulary. Covlan, however, also provides a vocabulary for repre-
senting visual operations, such as move-to-location, and for representing a
sequence of visual operations in a procedure.

Narayanan, Suwa and Motoda’s model [36] describe a cognitive model for
predicting the behavior of physical systems from their diagrams. The visual
knowledge is represented with diagram frames (representing lines and spaces
and connections between them) and occupancy array representations (repre-
senting, for each pixel, what kind of object is located there). The vocabulary of
Proteus’ knowledge representation language is at the same level of abstraction
as Narayanan, Suwa and Motoda’s model.

4.4 Visual Analogy

We have already described the ANALOGY and Letter Spirit systems in the
introduction. A couple of addtional remarks about Letter Spirit are in or-
der. Letter Spirit transfers single transformations/attributes (e.g. crossbar-
suppressed) and therefore cannot make analogical transfer of procedures (e.g.
moving something, then resizing it) which Proteus can do. In contrast, one
can see how Proteus might be applied to the Letter Spirit’s font domain: The
stylistic guidelines in LetterSpirit, such as “crossbar suppressed” are like the
visual transformations in Proteus: “crossbar supressed would be a transforma-
tion of removing an element from an s-image, where element removed would
the crossbar and the s-image would be the prototype letter f. Once the trans-
formation is expressed in Proteus’ vocabulary, it could be applied to all the
other letters one by one. In this way, Proteus is more general than LetterSpirit.

Like ANALOGY, the PAN system [37] uses graph-like representations of ab-
stract diagrams and outputs transformations that will turn one diagram into
another. Neither ANALOGY nor PAN however can transfer problem-solving
procedures.

35



MAGI [11] takes visual representations and uses the Structure-Mapping En-
gine to find examples of symmetry and repetition in a single diagram. JUXTA
[12] uses MAGI in its processing of a diagram of two parts. It outputs a map-
ping between the images, and notes distracting and important differences.
Both MAGI and JUXTA use GeoRep’s visual representation language.

DIVA [4] is another analogical mapper that uses visual representations. Specif-
ically, it uses the Java Visual Object System. its examples is the fortress/tumor
problem, however, it does not transfer problem solving procedures.

In computer-aided design, FABEL [19] was an early project to explore the
automated reuse of diagrammatic cases. In particular, TOPO [2], a subsystem
of FABEL, used the maximum common subgraph (MCS) of the target drawing
with the stored drawings for retrieve similar drawings.

REBUILDER [24] is a case-based reasoner that does analogical retrieval, map-
ping, and transfer of software design class diagrams. The diagrams are repre-
sented structurally, not visually, however. This means that while REBUILDER
may represent that a teacher has a relationship with a school for example, it
does not represent as any left-of/right-of, above/below connection between
them.

5 Conclusion

We have described a computational theory of visual analogy in problem solving
that addresses all major subtasks of visual analogy. Proteus is a computer
program that implements and substantiates the theory. The contributions of
this paper are that (a) for the first time it describes Proteus as a whole,
and (b) it provides a detailed account of the knowledge representations and
algorithms used by Proteus. Proteus provides two main things: (a) a content
account and (b) a process account for visual analogy in problem solving. Our
work on Proteus leads us to the following three conclusions:

I: Visual knowledge alone is sufficient for some subtasks of analogical problem-
solving.

We started this work with the hypothesis that visual knowledge alone is suffi-
cient for analogical problem solving. We deliberately chose the fortress/tumor
problem to test this hypothesis not only because it is a classic example of ana-
logical problem solving but also because previous computational models for
this problem, such as PI [30], relied solely on non-visual causal and functional
knowledge. Based on Proteus, we now refine this hypothesis: visual knowledge
alone is sufficient for the retrieval, mapping and transfer subtasks of analogical

36



transfer of problem-solving procedures.

Proteus also shows that while visual knowledge is useful for the mapping task,
it alone is not suffiicent for generating a single mapping between a target
problem and a retrieved source case matching the target. The difficulty is
that while visual knowledge captures structural constraints (e.g., shapes, and
spatial relations), it does not capture causal and functional knowledge of either
the source or the target, which leaves the mapping task underconstrained
and results in the generation of multiple mappings between the target and
the source. Note that this finding is consistent with earlier work on visual
analogy: while ANALOGY does do mapping based on visual knowledge alone,
it does so in a context entirely different from and much simpler than transfer
of problem-solving procedures, and, in Letter Spirit, the mapping is compiled
into the system’s knowledge.

In addition, Proteus shows that visual knowledge alone cannot enable evalua-
tion of the transferred solution for the target problem. This finding is consis-
tent with other work on visual reasoning work, such as WHISPER [18], which
uses non-visual causal knowledge for evaluation.

II: Visual analogy is enabled by knowledge of shapes, spatial relations, and
shape and spatial transformations.

Proteus uses Covlan, an uniform knowledge representation language, for all
subtasks of visual knowledge. In particular, Proteus shows that the retrieval
task of visual analogy is enabled by symbolically represented knowledge of
shapes of objects (e.g., spline, ellipse) and spatial relations between the shapes
(e.g., above, left-of) in drawings representing the target and source cases.
It also shows that the transfer task requires additional knowledge, namely,
symbolic knowledge of transformations of shapes and spatial relations from
one knowledge state to the next (e.g., move, move-set). The latter is required
because of the need to represent the problem solving steps and their effects. Of
course, Covlan is incomplete; a larger class of domains may require additions
of its vocabulary.

III: Successful analogical transfer of strongly-ordered procedures in which
new objects are created requires generation of new mappings between the
intermediate knowledge states in the source and target cases.

An unexpected finding of our work on Proteus is that that the successful trans-
fer of strongly-ordered procedures in which new objects are created requires
the problem-solver to dynamically generate intermediate knowledge states and
new mappings between the intermediate knowledge states of the source and
target analogs. This is because the newly created objects are acted on by later
operations. In the tumor problem, for example, the strong ray is first turned
into a several weaker rays. When the problem solver transfers the move solid-

37



ers operation from the fortress case and seeks to apply the move operation to
the tumor problem, how does it know that the objects corresponding to the
soliders are the weaker rays? It must have some mapping to make this infer-
ence, and since the weaker rays do not exist in the start state of the tumor
problem, this mapping cannot be part of the initial mapping between the tar-
get and the source. Therefore, the new knowledge state with the weaker rays
must be generated, and then a new mapping must be made between the new
knowledge state and the corresponding knowledge state in the source case.

Acknowledgements

Nancy Nersessian has been a collaborator on the work on Galatea subsystem
of the Proteus system.

References

[1] M. Anderson, B. Meyer, and P. Olivier, editors. Diagrammatic Representation
and Reasoning. Springer, 2002.

[2] K. Börner, P. Eberhard, E.-C. Tammer, and C.-H. Coulon. Structural similarity
and adaptation. In I. Smith and B. Faltings, editors, Advances in Cased-
Based Reasoning: Proc. 3rd European Workshop on Cased-Based Reasoning,
volume 1168 of Lecture Notes in Artificial Intelligence, pages 58–75, Lausanne,
Switzerland, 1996. Springer-Verlag.

[3] D. L. Craig, R. Catrambone, and J. Nersessian, Nancy. Perceptual simulation
in analogical problem solving. In Model-Based Reasoning: Science, Technology,
& Values, pages 167–191. Kluwer Academic / Plenum Publishers, 2002.

[4] D. Croft and P. Thagard. Dynamic imagery: A computational model of motion
and visual analogy. In L. Magnani and N. J. Nersessian, editors, Model-Based
Reasoning: Science, Technology, & Values, pages 259–274. Kluwer Academic:
Plenum Publishers, 2002.

[5] J. Davies and A. K. Goel. Visual analogy in problem solving. In Proceedings of
the International Joint Conference for Artificial Intelligence 2001, pages 377–
382. Morgan Kaufmann Publishers, 2001.

[6] J. Davies, A. K. Goel, and N. J. Nersessian. Transfer in visual case-based
problem-solving. In Proceedings of the 6th International Conference on Case-
Based Reasoning. Springer-Verlag, 2005.

[7] J. Davies, N. J. Nersessian, and A. K. Goel. Visual models in analogical problem
solving. Foundations of Science, 2002. special issue on Model-Based Reasoning:
Visual, Analogical, Simulative.

38



[8] K. Duncker. A qualitative (experimental and theoretical) study of productive
thinking (solving of comprehensible problems). Journal of Genetic Psychology,
pages 642–708, 1926.

[9] T. G. Evans. A heuristic program to solve geometric analogy problems. In
M. Minsky, editor, Semantic Information Processing. MIT Press, 1968.

[10] B. Falkenhainer, K. D. Forbus, and D. Gentner. The structure-mapping engine:
Algorithm and examples. Artificial Intelligence, 41:1–63, 1990.

[11] R. W. Ferguson. Magi: Analogy-based encoding using regularity and symmetry.
In Proceedings of the Sixteenth Annual Conference of the Cognitive Science
Society, pages 283–288, 1994.

[12] R. W. Ferguson and K. D. Forbus. Telling juxtapositions: Using repetition
and alignable difference in diagram understanding. In K. Holyoak, D. Gentner,
and B. Kokinov, editors, Advances in Analogy Research, pages 109–117. New
Bulgarian University, 1998.

[13] R. W. Ferguson and K. D. Forbus. Georep: A flexible tool for spatial
representation of line drawings. Proceedings of the 18th National Conference on
Artificial Intelligence, 2000.

[14] K. D. Forbus. Qualitative kinematics: A framework. In D. S. Weld and
J. de Kleer, editors, Readings in Qualitative Reasoning About Physical Systems,
pages 562–567. Morgan Kaufmann Publishers, San Mateo, California, 1990.

[15] K. D. Forbus. Qualitative spatial reasoning framework and frontiers. In
J. Glasgow, N. H. Narayanan, and B. Chandrasekaran, editors, Diagrammatic
Reasoning: Cognitive and Computational Perspectives, pages 183–202. AAAI
Press/MIT Press, 1995.

[16] K. D. Forbus, R. W. Ferguson, and D. Gentner. Incremental structure-mapping.
In Proceedings of the Sixteenth Annual Conference of the Cognitive Science
Society, pages 313–318, 1994.

[17] K. D. Forbus, D. Gentner, and K. Law. MAC/FAC: A model of similarity-based
retrieval. Cognitive Science, 19(2):141–205, 1995.

[18] B. V. Funt. Problem-solving with diagrammatic representations. Artificial
Intelligence, pages 201–230, 1980.

[19] F. Gebhardt, A. Voss, W. Grather, and B. Schmidt-Belz. Reasoning with
Complex Cases. Kluwer, 1997.

[20] D. Gentner. Structure-mapping: A theoretical framework for analogy. Cognitive
Science, 7(2):155–170, 1983.

[21] M. L. Gick and K. J. Holyoak. Analogical problem solving. Cognitive
Psychology, pages 306–355, 1980.

[22] J. Glasgow, H. Narayanan, and B. Chandrasekaran, editors. Diagrammatic
Reasoning: Cognitive and Computational Perspectives. AAAI Press/MIT Press,
1995.

39



[23] J. Glasgow and D. Papadias. Computational imagery. In P. Thagard, editor,
Mind Readings. MIT Press, 1998.

[24] P. Gomes, N. Seco, F. C. Pereira, P. Paiva, P. Carreiro, J. L. Ferreira,
and C. Bento. The importance of retrieval in creative design analogies.
In Creative Systems: Approaches to Creativity in AI and Cognitive Science.
Workshop program in the Eighteenth International Joint Conference on
Artificial Intelligence, pages 37–45, 2003.

[25] T. W. Griffith. A Computational Theory of Generative Modeling in Scientific
Reasoning. PhD thesis, College of Computing, Georgia Institute of Technology,
2000.

[26] T. W. Griffith, N. J. Nersessian, and A. K. Goel. The role of generic models in
conceptual change. In Proceedings of the Eighteenth Annual Conference of the
Cognitive Science Society, pages 312–317, 1996.

[27] T. W. Griffith, N. J. Nersessian, and A. K. Goel. Function-follows-form
transformations in scientific problem solving. In Proceedings of the Twenty-
second Annual Conference of the Cognitive Science Society, 2000.

[28] K. J. Hammond. Case-based planning: A framework for planning from
experience. Cognitive Science, pages 385–443, 1990.

[29] K. J. Holyoak and P. Thagard. Analogical mapping by constraint satisfaction.
Cognitive Science, pages 295–355, 1989.

[30] K. J. Holyoak and P. Thagard. A computational model of analogical problem
solving. In S. Vosniadou and A. Ortony, editors, Similarity and analogical
reasoning, pages 242–266. Cambridge University Press, 1989.

[31] K. J. Holyoak and P. Thagard. The analogical mind. American Psychologist,
pages 35–44, 1997.

[32] J. Hummel and K. J. Holyoak. Lisa: A computational model of analogical
inference and schema induction. In Proceedings of the Eighteenth Annual
Conference of the Cognitive Science Society, pages 352–357, 1996.

[33] M. T. Keane and M. Brayshaw. The incremental analogy machine. In
Proceedings of the Third European Working Session on Learning, pages 53–62,
1988.

[34] J. Larkin and H. Simon. Why a diagram is (sometimes) worth ten thousand
words. Cognitive Science, pages 65–99, 1987.

[35] G. McGraw and D. R. Hofstadter. Perception and creation of alphabetic style.
Technical report, AAAI, 1993.

[36] H. N. Narayanan, M. Suwa, and H. Motoda. How things appear to work:
Predicting behaviors from device diagrams. In Proceedings of the 12th National
Conference on Artificial Intelligence, pages 1161–1167, 1994.

40



[37] S. O’Hara and B. Indurkhya. Incorporating (re)-interpretation in case-based
reasoning. In Proceedings of the First European Workshop on Case-Based
Reasoning (EWCBR-93), pages 246–260, 1994.

[38] U. Schmid and J. Carbonell. Empirical evidence for derivational analogy. In
Proceedings of the 21st Annual Conference of the Cognitive Science Society,
page p. 814, 1999.

[39] P. Thagard, K. J. Holyoak, G. Nelson, and D. Gochfeld. Analog retrieval by
constrain satisfaction. Artificial Intelligence, 46:259–310, 1990.

[40] M. M. Veloso. Prodigy/analogy: Analogical reasoning in general problem
solving. In EWCBR, pages 33–52, 1993.

[41] M. M. Veloso and J. G. Carbonell. Derivational analogy in prodigy: Automating
case acquisition, storage, and utilization. Machine Learning, pages 249–278,
1993.

[42] P. H. Winston. Learning and reasoning by analogy. Communications of the
ACM, 1980.

[43] P. W. Yaner and A. K. Goel. Visual analogy: Viewing analogical retrieval and
mapping as constraint satisfaction problems. accepted for publication, 2005.

41


