
Analogical Mapping Through Visual Abstraction

Jim Davies (jim@jimdavies.org)
Science of Imagination Laboratory

Institute of Cognitive Science; Carleton University; 1125 Colonel By Drive
Ottawa, Ontario, K1S 5B6 Canada

Patrick W. Yaner (patrick.yaner@gmail.com)
Artificial Intelligence Laboratory

College of Computing; Georgia Institute of Technology; 801 Atlantic Drive
Atlanta, GA 30332-0280 USA

Abstract

Analogical mapping theories tend to focus on
matching identical symbols (either for objects or the
relations between them). In the domain of visual
representations we implemented a mapping system
that uses separate domain knowledge (a shape-type
superclass hierarchy) to re-represent analogs such
that identicality can be found at different levels of
abstraction. Such a scheme is useful where shape,
and not the spatial layout of the analog images, is
important to aligning visual objects.

Introduction
Mapping, a core part of analogy, is finding the align-
ments between the elements of two analogs. For ex-
ample, in an analogy between a face and the front
of a car, a mapping might include an alignment be-
tween the eyes and the windshield. Such an align-
ment might be based on the fact that the “percep-
tual” input to the car happens at the windshield for
a car as do the eyes for a face.

Mapping is combinatorially complex, and this
complexity is reduced by finding similarity between
the elements to be mapped. In the example above,
the alignment is justified by the functional similar-
ity between the eyes and the windshield. In the dis-
cussion section we will describe different similarity
measures for implemented mapping systems.

Our work focuses on mapping for purely visual
analogs. That is, we are exploring different sim-
ilarity measures that are appropriate for mapping
the visual components of images. To return to the
car/face example, rather than functionally aligning
the eyes and the windshield, an agent that focused
on visual similarity might align the eyes to the head-
lights because they both consist of two elements, are
both round, and are horizontally oriented.

One way to find similarity between visual elements
is by identification of identical symbols relating the
elements. Most simply, if two elements are described
in the representation as square, then the mapping
agent can favor their alignment. Another way is to
identify identical symbols that relate elements of the
same image. For example, if in one image element-x
is related to element-y with a symbol is-above, then
a mapper interested in the structure of images might

want to align x and y to f and g, if indeed f is-above
g in the other analog—regardless of what shape x,
y, f and g are. Structure Mapping Theory (Gen-
tner, 1983) uses identicality of the symbols describ-
ing structure to find mappings between analogs.

Grouping
The Gestalt psychologists found that people percep-
tually grouped visual elements according to, among
other aspects, shared orientation, color, and prox-
imity. This provides psychological evidence for an
explicit representation of visual element grouping.
Broadly speaking there are two kinds of groups
in our work: aggregations and sets. Aggregations
are multiple visual elements that form one coherent
shape (e.g. a square is an aggregate of four lines).
Sets are groups of elements that are unconnected but
similar in some way (e.g. nuts in a bowl).

Sets and aggregates appear at a certain level of ab-
straction, at which they can be aligned to each other
as visual elements. An agent with a flexible rep-
resentation can, however, zoom into these groups.
There are two reasons an agent might want to do
this: First, If the agent must decide which group
to align to which other group, the conflict resolu-
tion might require an examination of the contents
of that group. Second, it might be important to
align group members. For example, imagine align-
ing two armies—at this level of abstraction armies
can be moved and split apart, and it makes sense to
have the armies’ generals simply be members of the
army sets. But if the agent needs to reason about
the generals in particular, it could be important to
know that the general in one set aligns to the gen-
eral in the other. In analogical problem solving, for
example, certain operations need to be applied to
elements of analogs.

Different levels of representation are needed for
different transformations applied to the analog
(Davies, Goel, & Nersessian, 2003). Likewise with
aggregates, mapping one box to another is the right
level of abstraction for motion of the entire set, but
opening one side of the box by moving one of its con-
stituent lines requires a mapping at the component
level.

For these reasons it is helpful for an agent to be



flexible in its representations such that it can reason
at multiple levels of grouping abstraction.

Shape-type Superclass Hierarchy
The above similarity notions use the nature of the
analogs as given in the representation. However sim-
ilarity can also be found through the application of
domain knowledge to the analogs. In the visual do-
main, this can take the form of a shape-type hier-
archy (See Figure 2.) For example, a right triangle
and an isosceles triangle are similar because they are
both triangles. Even in cases where the term trian-
gle, and its relation to right-triangle and isosceles-
triangle are not explicit in the representation of the
analogs, an agent can use the domain knowledge of a
shape-type hierarchy to find element similarity. We
will show that abstraction using this hierarchy is
particularly useful (compared to structure-mapping)
for analogs in which the spatial arrangement of the
visual elements is less important than the shapes of
the objects represented. The examples we explicate
below are of this type. Using abstraction has been
used in Minimal Ascension (Falkenhainer, 1988) and
in cross-domain analogical learning (Klenk & For-
bus, 2007).

Our theory is that aggregation and set abstrac-
tion are useful representations for mapping visual
analogs, and that re-representation using a shape-
type hierarchy can address some cases of ontological
mismatch, where similar ideas cannot be identified
as such because they are represented with different
symbols.

Model
In this section we will describe our theoretical mod-
els for the three kinds of visual abstraction in more
detail.

Our representational architecture consists of
propositions, each of which connects two symbols
with a relation. For example

(butterdish looks-like rectangle)

connects the butterdish symbol to rectangle with a
relation that the agent uses to align symbols with
the same shape type. This uses the Covlan visual
language (Davies & Goel, 2007).

Set and Aggregation Hierarchies
Sets are explicit visual objects with no shape. They
have links to their members, and the members like-
wise have back-pointers to the sets. Sets can contain
other sets as members. Sets get aligned to other
sets through some similarity measure based on the
shapes of their members, but the members them-
selves will not be mapped unless the agent has a
specific reason to do so. The cognitive justification
for this is introspective: we do not appear, for exam-
ple, to align each paper clip in one pile to each binder

point

line open curve

polygon ellipse level 3

level 2

level 1

Figure 1: Component Aggregation Hierarchy

clip in another pile unless there is reason to do so,
even though we might see the two sets as similar.

The same goes for aggregate objects. At the first
pass of mapping, the aggregates are mapped to each
other. In instances of conflict, the agent uses a mea-
sure of the shape similarity of the components to
resolve it.

When there is a need to align the members or com-
ponents, the entire mapping function can be recur-
sively called on the sets or aggregates in question—
that is, restart the mapping process as though the
two aligned sets or aggregates were to the two images
to be mapped.

The simplest kind of aggregates are visual ele-
ments aggregated together. Using knowledge of a
shallow aggregation hierarchy (see figure 1) the agent
can bring more domain knowledge to bear on the
aggregate objects to align the components. When
called upon to do align the components of simple vi-
sual elements, to resolve conflicts the most specific
element in either aggregate object is decomposed
into its aggregate parts. Then the identity-based
mapping system tries again. This process repeats
until all the align-able sub-elements are aligned.

Shape-Type Hierarchy
Each level of the shape-type hierarchy is associated
with a level number. The higher the number, the
less abstract the shape is. Abstraction is changing
a shape to its more abstract form. For example,
abstracting a square (level 8) means transforming it
to a rectangle (level 7).

Process
Mapping is iterative. A mapping is a set of maps,
which are alignments between a visual element in
one analog to an element in the other.

1. Create maps of identical shape types, including
aggregates and sets, ignoring the components of
aggregates and the members of sets. If there is a
conflict with mapping aggregates and sets, break
them up into their constituents and see which are
the most similar (a simple vector analysis of the
contents).

2. If there are no more shapes to map in either the
target or the source analog, recursively run this



polygon

quadrilateral triangle level 5

level 6parralellogram right−triangle scalene−triangle

level 7

level 8

spline segmented−line level 4

level 3

level 2

level 1shape

isoceles−triangle

equilateral−triangle

square

rectangle

circle

ellipse

point curve

closed−curve open−curve

Figure 2: Shape Type Hierarchy

mapper on the members of sets and the compo-
nents of aggregates, if any, then exit.

3. Abstract the highest numbered visual primitive in
either analog one level. Go to step 1.

The visual elements need to be abstracted sepa-
rately. If every element in the image is abstracted
at once, matches will miss each other as they pass
through levels of abstraction.

Implementation
We have some implemented the ideas above in a run-
ning computer program called Thalassa. Thalassa
maps identical shapes and groups, and abstracts
shapes with the shape-type hierarchy.

Thalassa has two basic components: a frame sys-
tem and a “classical” problem solver. First, the
“memory” of shape types and images with their el-
ements and aggregate objects and such was built
using a simple frame system. Relations of the
sort (building looks-like square) lend them-
selves naturally to a frame-based representation,
where the frame for building has a slot looks-like
with the filler square. Likewise an image is a frame
with a slot contains-elements whose filler is a list
of elements (symbols naming visual element frames)
in the system. Though the content of the frames
in our actual implementation was sparse, the idea
is that any extra information that might be useful
to a larger problem-solving context could be added.
For instance, surely people are aware of the location

(qualitative or relative) within an image of a par-
ticular visual element, and the frame representation
naturally allows one to add a slot has-location (or
what have you). The only information actually used
in the implementation was the looks-like slot for
each visual element and the has-size slot (which
took sizes like small, medium, and big).

Problem Solver
The second part of the implementation was the prob-
lem solver itself. Following the problem space hy-
pothesis, and using the Classical Problem Solver
(Forbus & DeKleer, 1993), we transformed the map-
ping problem into a search problem. One can think
of one “state” of the search as the current set of
maps—that is, the list of elements in each of the two
analogs that have been mapped so far. An operator
generating a new state in the search can do one of
two things: map as many elements with the same
shape as possible (generating a new state for each
partial matching possible), or else pick one element
to abstract.

The actual data structure representing a “state”
in the search had the following elements:

Source The name of the source image frame

Target The name of the target image frame

Maps The list of maps gathered so far

Unmapped Source Elements A list of source el-
ements that have not been mapped onto target



sourcetarget

Figure 3: These two analogs represent a table before
and after dinner. The fork and spoon are aggregate
objects. Pictured are plates, butter dishes, forks,
knives, spoons, and napkins.

elements, initially set to all the source elements in
the image.

Unmapped Target Elements A list of target ele-
ments that have not found source analogs, initially
set to all the target elements in the image.

Needs Abstraction? A flag indicating that there
are unmapped source and target elements that
cannot be mapped without abstracting the shape
types.

Abstractions A data structure that associates
with each element (source and target) it’s cur-
rently abstracted shape type. This is initially
filled with the fillers from the looks-like slot,
and as shapes are abstracted the contents slowly
change.

The goal condition in this search is simply that
either the unmapped-source-elements list or the
unmapped-target-elements list becomes nil, in
which case there are no more elements to match.

The next state operator generate-new-mappings
simply checks the needs-abstraction flag,
calling abstract-one-element if it is true,
and extend-mappings otherwise. The
abstract-one-element function is quite sim-
ple: it sorts the complete list of unmapped
elements, choosing the one with the highest level
arbitrarily (that is, if there are several, choosing the
one at the front of the sorted list as an arbitrary
choice) to abstract one level, if possible. It cannot
abstract anything past shape, obviously (that being
the top of the hierarchy), and so returns nothing if
all of the shapes in the image are fully abstracted.

The extend-mappings function is much more
complex. It has three parts: (1) generate all pos-
sible maps-to relations for each unmapped target
element, separating them into whole mappings as
it goes; (2) separate maps-to relations within each
mapping that map onto the same source into sepa-
rate whole mappings; and (3) generate a new state
for each whole mapping.

sourcetarget

Figure 4: In the lot source there is a group represent-
ing a 18 wheeler (an aggregate of a square represent-
ing the cab and a rectangle representing the trailer).
Also in the image is a set of garbage cans. Note
there are a different number of cans in the analogs.
The irregularly shaped object is a puddle, and the
lone rectangle is a dumpster.

The first part of this operation makes a list of all
the elements that map to the given target (which
is simply a list of all the unmapped sources that
are identical under the looks-like relation and
the current abstractions), and separates these into
whole mappings, where one whole mapping has one
maps-to relation for each target (there may be tar-
gets with no mapped sources, of course). It takes
care to assemble all combinations when doing this.

The second part of the mapping looks within each
mapping for two maps that map separate targets to
the same source. If one is found, it is split into two
mappings by removing one and then the other map
from the mapping.

The third part simply takes each whole mapping,
filters out those elements (sources and targets) which
have been mapped from the unmapped elements
lists, and generates a new state. A list of all new
states is returned.

The search returns all mappings that it found. It’s
not clear to us that there is necessarily any cogni-
tive plausibility in this decision, but for the sake of
implementation we thought it best to have it return
all mappings rather than choose one arbitrarily as
the “best” mapping to return (one of the examples
discussed below had several possible mappings).

One feature that has not been implemented in this
version is recursing on aggregates and sets. Also, the
system could often abstract in more than one way,
and it’s not clear that choosing one thing arbitrarily
to abstract is the best decision; it seems wiser to
have it abstract in all possible ways, generating new
states (and hence new subtrees) in the search (space)
for each one.



sourcetarget

4

5
6

5

4
4

44

Figure 5: The faces example has similar faces re-
flected and rotated 180 degrees. Such transforma-
tions do not preserve many spatial relations, with
certain exceptions such as containment and connec-
tions. The numbers represent the level of specificity
of each shape in the shape-type hierarchy.

Test Examples
We ran this system on three test examples. The first,
illustrated in Figure 3, was a table set up before and
after a meal (not necessarily images from the same
meal), where the elements are scattered about the
table after the meal, and so structure would proba-
bly be uninformative. However, a fork looks like a
for, a plate looks like a plate, and so on. In fact, the
system found four mappings: the fork could map to
the fork or the spoon (and vice versa), and the nap-
kin could map to the napkin or the butter dish (and
vice versa). Everything else mapped to the element
of the same name, thus giving four mappings.

The second, illustrated in figure 4, was supposed
to be an overhead view of a parking lot, with a
dumpster and a group of trash cans and a truck ag-
gregate (cab and trailer) and a puddle all in different
positions. this had only one mapping.

The third example, illustrated in figure 5, mapped
a face to another face reflected and inverted. Again,
only one mapping was found.

Discussion

We are theorizing about solutions to the cognitive
problem known as the ontological mismatch prob-
lem: When two ideas that should be thought of as
similar are not because they are represented with
different symbols. This problem manifests itself in
mapping because the labels for objects and relations
often do not match exactly. For example, mapping
orbits with revolves-around.

Our solution uses shape-type abstraction, which
is a content account of the visual domain. EMMA
(Ramscar & Yarlett, 2003) uses a content account
as well to solve ontological mismatching for anal-
ogy. The knowledge EMMA uses is the correlation
of word proximity in text (Latent Semantic Analysis,

LSA). Each word in LSA correlates with each other
word. When trying to map, different words with a
correlation above a certain threshold are considered
equivalent, and can be mapped.

The Structure-Behavior-Function knowledge rep-
resentation language (Goel et al., 1997) offers an-
other means for resolving ontological mismatches.
SBF language representations of systems include
functional descriptions each device component.

Forbus et al. (1998, p.246) and Hummel and
Holyoak (1997) both suggest that ontological mis-
matches can be resolved through re-representation
using abstraction (e.g. lift and push can abstract
to move. This idea also suggests a superclass hier-
archy, but to our knowledge neither research group
has implemented this.

Other implemented mappers rely on the identi-
cality of symbols (either of the mapped concepts or
the relations between them) and on a canonicalized
representation to avoid ontological mismatches.

Ours is a content based account that uses re-
representation using domain knowledge of visual ob-
jects.

Conclusion

In this paper we have described a method based on
domain knowledge for analogical mapping of visual
representations. Specifically, we focused on group-
ing and shape-abstraction. The one-to-one mapping
constraint is maintained for our system, but sets and
aggregates are treated as object to be mapped. Our
ideas are implemented into a running computer pro-
gram called Thalassa. Future versions of Thalassa
will be able to recursively map set members and ag-
gregate components.

We conjecture that these content-based mapping
strategies will prove superior to structure-mapping
in cases when the analogs share similarly-shaped
components but where the spatial arrangement of
the objects is disordered. A full, cognitively plau-
sible model of visual mapping will need to include
both structure and object mapping. Future research
will test these claims through computational com-
parison with structure-based mapping engines on
several examples.

References

Davies, J. & Goel, A. K. (2007). Transfer of
Problem-Solving Strategy Using Covlan. Journal
of Visual Languages and Computing: 18, 149–164.

Davies, J., Goel, A. K. & Nersessian, N. J. (2003).
Visual Re-Representation in Creative Analogies.
In A. Cardoso & J. Gero (Eds.) The Third Work-
shop on Creative Systems. International Joint
Conference on Artificial Intelligence, 1–12.

Falkenhainer, B. (1988). Learning from Physical
Analogies. Technical Report No. UIUCDCS-



R-88-1479, University of Illinios at Urbana-
Champaign. (Ph.D. Thesis)

Forbus, K., & De Kleer, J. (1993). Building Problem
Solvers. MIT Press.

Forbus, K., Gentner, D., Markman, A. B., & Fer-
guson, R. W. (1998) Analogy just looks like high
level perception. Why a domain-general approach
to analogical mapping is right. Journal of Experi-
mental and Theoretical Artificial Intelligence, 10,
231–257.

Gentner, D. (1983). Structure-mapping: A theoret-
ical framework for analogy. Cognitive Science, 7,
pp 155-170.

Goel, A., Bhatta, S. & Stroulia, E. (1997) Kritik:
An Early Case-Based Design System. In Maher,
M. and Pu, P. (Eds.) Issues and Applications of
Case-Based Reasoning in Design, Mahwah, NJ:
Erlbaum, pages 87–132.

Hummel, J. E., & Holyoak, K. J. (1997). Distributed
representations of structure: A theory of analog-
ical access and mapping. Psychological Review,
104, 427–466.

Klenk, M. & Forbus, K. (2007). Cross domain analo-
gies for learning domain theories. In A. Schwer-
ing et al. (Eds.) Analogies: Integrating Multiple
Cognitive Abilities, Volume 5-2007. Publication
of the Institute of Cognitive Science, University
of Osnabruck.

Ramscar, M. & Yarlett, D. (2003). Semantic
grounding in models of analogy: an environmental
approach. Cognitive Science 27:1. 41–72.

Output
CL-USER(33): (find-mappings ’s-face-simage
’t-face-simage) ; Fast loading
/net/hc283/yaner/work/current/7613/bps/proj/memory.fasl
(((S-FACE-HEAD MAPS-TO T-FACE-HEAD)
(S-FACE-MOUTH MAPS-TO T-FACE-MOUTH)
(S-FACE-EYE MAPS-TO T-FACE-EYE)
(S-FACE-NOSE MAPS-TO T-FACE-NOSE)))
CL-USER(34): (find-mappings ’s-lot-simage
’t-lot-simage) ; Fast loading
/net/hc283/yaner/work/current/7613/bps/proj/memory.fasl
(((S-PUDDLE MAPS-TO T-PUDDLE)
(S-TRUCK-AGGREGATE MAPS-TO
T-TRUCK-AGGREGATE) (S-DUMPSTER
MAPS-TO T-DUMPSTER) (S-CANS
MAPS-TO T-CANS))) CL-USER(35):
(find-mappings ’s-table-simage
’t-table-simage) ; Fast loading
/net/hc283/yaner/work/current/7613/bps/proj/memory.fasl
(((S-NAPKIN MAPS-TO T-BUTTERDISH) (S-GLASS
MAPS-TO T-GLASS) (S-FORK-AGGREGATE
MAPS-TO T-SPOON-AGGREGATE) (S-KNIFE
MAPS-TO T-KNIFE) (S-SPOON-AGGREGATE
MAPS-TO T-FORK-AGGREGATE) (S-PLATE

MAPS-TO T-PLATE) (S-BUTTERDISH MAPS-TO
T-NAPKIN)) ((S-NAPKIN MAPS-TO T-BUTTERDISH)
(S-GLASS MAPS-TO T-GLASS) (S-FORK-AGGREGATE
MAPS-TO T-FORK-AGGREGATE) (S-KNIFE MAPS-TO
T-KNIFE) (S-SPOON-AGGREGATE MAPS-TO
T-SPOON-AGGREGATE) (S-PLATE MAPS-TO
T-PLATE) (S-BUTTERDISH MAPS-TO T-NAPKIN))
((S-BUTTERDISH MAPS-TO T-BUTTERDISH)
(S-GLASS MAPS-TO T-GLASS) (S-FORK-AGGREGATE
MAPS-TO T-SPOON-AGGREGATE) (S-KNIFE
MAPS-TO T-KNIFE) (S-SPOON-AGGREGATE
MAPS-TO T-FORK-AGGREGATE) (S-PLATE MAPS-TO
T-PLATE) (S-NAPKIN MAPS-TO T-NAPKIN))
((S-BUTTERDISH MAPS-TO T-BUTTERDISH)
(S-GLASS MAPS-TO T-GLASS) (S-FORK-AGGREGATE
MAPS-TO T-FORK-AGGREGATE) (S-KNIFE MAPS-TO
T-KNIFE) (S-SPOON-AGGREGATE MAPS-TO
T-SPOON-AGGREGATE) (S-PLATE MAPS-TO
T-PLATE) (S-NAPKIN MAPS-TO T-NAPKIN)))
CL-USER(36): (dribble)


