
Visio-spatial Case-Based Reasoning: A Case

Study in Prediction of Protein Structure

Jim Davies Janice Glasgow Tony Kuo

School of Computing, Queen’s University

Kingston, Ontario K7L 3N6 Canada
jim@jimdavies.org, janice@cs.queensu.ca
613 533-6058 (phone); 613 533-6513 (fax)

Submitted to Computational Intelligence Oct. 2005

Running Title: Protein Structure Prediction With Visual CBR

1



Abstract

We show that visio-spatial representations and reasoning can be
used as a similarity metric for case-based protein structure prediction.
Our system retrieves pairs of α-helices based on contact map similar-
ity, then transfers and adapts the structure information to an unknown
helix pair. We show that similar protein contact maps predict similar
3D protein structure. The success of this method provides support for
the notion that changing representations can enable similarity metrics
in case-based reasoning.

Key words: case-based reasoning, protein structure, analogy, bioinformat-
ics, computational biology.
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1 Introduction

It is well known that the right representation greatly facilitates reasoning
[Amarel, 1968] and there is a growing recognition of the need for intelligent
architectures to accomodate a diversity of representations [McCarthy et al., 2002].

The guiding theory of our research is that changing representations allows
reasoners to see similarities in one representation type that might be difficult
to detect in another. For example teleological representations of a human face
and the front of a car may have very little semantic overlap. In this research
we focus on visio-spatial representations. In our example representing the
headlights and eyes as circles, and the grill and mouth as a centrally-located
hole allows connections to be drawn between these components.

As people often have visio-spatial experiences when solving problems
[Casakin and Goldschmidt, 1999, Farah, 1988, Monaghan and Clement, 1999,
Shepard and Cooper, 1988], an important step in establishing our above the-
ory is to show that one function of visio-spatial representations is that they
can be used to solve a variety of problems. In this paper we provide sup-
port for this notion in the domain of protein structure prediction. We will
describe the problem, and then how we use visio-spatial reasoning on images
to solve it.

1.1 Protein Structure Prediction

A primary goal of molecular biology is to understand the biological pro-
cesses of macromolecules in terms of their physical properties and chemical
structure. Since knowing the structure of macromolecules is crucial to un-
derstanding their functions, and all life crucially depends on protein function
[Hunter, 2004], an important part of molecular biology is understanding the
three-dimensional (3D) structure of proteins.

Proteins are composed of one or more chains of amino acid residues.
The description of which residues appear and in what order is the protein’s
“primary structure”. According to the laws of chemistry, the chains twist,
fold, and bond at different points, forming a complex 3D shape. Subchains
form regular “secondary structures”, the two main types being α-helices and
β-strands. The overall protein shape (which may involve several chains) is
known as its “quaternary structure”. A major unsolved problem for the
biological sciences is to be able to reliably predict the quaternary structure
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from the primary. This, at the highest level, is our problem domain.
Approaches to protein structure prediction vary from those that apply

physical principles to those that consider known amino acid sequences and
previously determined protein structures. Many of the latter use what is
known as “homology” as a similarity metric. In this context homology is the
similarity of two amino acid sequences. Our work also falls in the latter cat-
egory, but rather than using primary structure directly, we compare contact
maps.

1.1.1 Contact maps

A distance map, D, for a protein with n amino acid residues is an n × n,
symmetric array where entry D(ai, aj) is the distance between residue ai and
residue aj, generally calculated at the coordinates of the Cα (carbon-alpha)
atoms for the residues. Given a distance map D, we compute a contact map
C for the protein as a symmetric, n × n array such that:

C(ai, aj) =
{

1, if D(ai, aj) < t;
0, otherwise.

where t is a given threshold value (in our work this theshold is 10Å). There
exists a contact between residues ai and aj if and only if they are within a
given distance t of one another in the protein structure. Figure 1 illustrates
image representations for a distance map and a contact map reconstructed
from the Protein Data Bank (PDB) [Berman et al., 2000].

In our work we use idealized contact maps. That is, we generate dis-
tance maps and contact maps from the actual 3D structure from the PDB
of our target proteins. We wish to show that our method can work with
idealized contact maps before we start to work with predicted contact maps.
Researchers have considered various approaches for the process of predicting
contact maps for a protein from its primary sequence and structural features;
these are primarily based on neural network-based methods [Fariselli et al., 2001,
Pollastri and Baldi, 2002]. Punta and Rost [Punta and Rost, 2005] propose
a contact prediction method that combines alignment information, secondary
structure predictions and solvent accessibility. While results from these stud-
ies are encouraging, they still result in maps that contain a large degree of
noise. Thus we carry out our initial experiments on idealized maps gener-
ated from the PDB. Future work will include prediction of structure from
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predicted contact maps.
A contact map is a translational and rotational invariant, visio-spatial

representation that captures some of the protein’s relevant structural infor-
mation. Our general hypothesis is that visual processing on contact maps
enables effective retrieval of similar structures, even if homology sequence is
ignored. Contact maps provide a “fingerprint” that can be used to efficiently
compare proteins to find ones with similar substructures. We will refine this
hypothesis when we describe our implementation.

2 Overview of the project

In this section we will describe the plan for our entire project. In the next
section we will describe the implemented modules.

At the highest level, each time the system runs it takes as input 1) the
contact map for the unknown (target) protein, and 2) a case library of known
protein structures and contact maps. The final output consists of a location
in space (x, y, z coordinates) of each amino acid residue in the target protein.

2.1 CBR Applied to Protein Structure Prediction

The project applies case-based reasoning (CBR) at many levels of abstrac-
tion. The secondary and super-secondary structures are identified. CBR is
used to infer the coordinates for secondary structures, then for their connec-
tions to form super-secondary structures.

CBR [Kolodner, 1993, Riesbeck and Schank, 1989] is founded on the premise
that similar problems have similar solutions. It is a paradigm for analogical
reasoning where experiences are represented as cases in a case base, then
retrieved and reused during problem solving.

Aaronson et al. [Aaronson et al., 1993] suggest that analogical reasoning
is particularly applicable to the biological domain, partly because biological
systems are often homologous (rooted in evolution). As well, biologists often
use a form of reasoning similar to CBR, where experiments are designed and
performed based on the similarity between features of a new system and
those of known systems. CBR and/or analogical reasoning has previously
been applied to a number of problems in molecular biology; an overview of
these systems can be found in [Jurisica and Glasgow, ].
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Our system retrieves and adapts protein data from the PDB in order to
construct potential 3D structural models for our target protein. These models
are evaluated in terms of domain knowledge and the “best” structures will
ultimately be used as building blocks at the next level of model building.

Our approach incorporates an hierarchical search strategy that initially
locates proteins that have similar secondary structures to our input protein.
Given a protein p with j secondary structures (α-helices, β-sheets and coils),
we define its secondary structure contact map as the j × j array S such that
S(sm, sn) = k, where k is the number of contacts in map C between residues
in secondary structure sm and residues in secondary structure sn for protein
p. Figure 2 illustrates the secondary structure contact map corresponding to
the contact map of Figure 1.

The method is hierarchical, in the sense that it considers protein contact
maps at varying levels of structural complexity. In a bottom-up fashion,
we initially construct secondary structure motifs using the contact map and
geometric knowledge of α-helices and β-strands. Contacts between residues
in pairs of secondary structures are used to predict the alignment for the pairs
based on substructures in the PDB with similar contact maps. Similarly, we
propose that super-secondary structure and tertiary structure alignments can
be predicted based on structures retrieved from the PDB using contact maps
at higher levels of the hierarchy.

The approach incorporates a case representation that captures the con-
tact between substructures of the protein at both the amino acid and the
secondary structure levels. This allows for an efficient preliminary search of
the case base to retrieve proteins that may have similar solutions, followed by
a more detailed analysis of contacts between amino acids to adapt previous
solutions to the new problem.

The solution, for a novel target problem, is a protein structure predicted
from its contact map using a step-wise, hierarchical approach:

1. For each target map C(sm,sn) that contains more than four contacts, use
CBR to determine an optimal alignment of the two secondary struc-
tures using experience embodied in the PDB.

2. Using the aligned pairs of secondary structures as building blocks,
super-secondary and tertiary structures can be constructed by once
again using a CBR approach.
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The implementation focuses on the first step of the procedure. In par-
ticular, we retrieve similar α-helix pair contact maps and adapt the known
structures to predict alignments for the unknown structures.

To predict the alignment of sub-structures in 3D space, we consider con-
tact maps, Csm,sn

, corresponding to pairs of secondary structures (sm, sn)
such that S(sm, sn) > 4.1 This map is the subarray of C such that the the
rows of Csm,sn

correspond to the amino acid residues in secondary structure
sm and the columns correspond to the residues in secondary structure sn.
These maps need only be defined for contacts along and below the diagonal
of the secondary structure contact map, as the map for pair (sm, sn) is equiv-
alent to that for (sn, sm). Note, that unlike the protein contact map and the
secondary structure contact map, the contact maps for pairs of helices are
not generally symmetric. Figure 3 illustrates a contact map for a pair of
α-helices.

The retrieve task returns a list of retrieved cases, ordered according to
similarity. The similarity metric is a visual similarity between source and
target contact maps. The adapt module transfers structure information from
the top retrievals (called the “sources”) and modifies the information accord-
ing the the specifics of the target. Since these are the modules that have been
implemented, we will describe them in detail in the next section.

Case representation

Our cases have three parts: a problem description, a solution and feedback
on the solution. The problem description - input to the system - consists of
the following attributes and their corresponding values: 1) protein name, 2)
primary sequence, 3) assignment of secondary structure to residues, 4) class
of structure, and 5) the protein’s contact map.

Secondary structure maps and maps for pairs of secondary structures are
computed using the protein contact map and secondary structure assignment.

The solution, for the target problem, consists of the predicted structure
of the protein (the x, y, z coordinates for each residue). The feedback (if
available), consists of the correct structure for the protein and the calcu-
lated Root Mean Square Distance (RMSD) measure between the predicted

1If there are fewer than five contacts between two secondary structures it is difficult to
determine their orientation from their contacts.
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structure and the correct structure. This distance provides a measure of
“goodness” for the derived solution.

The adaptation component of our CBR system outputs multiple possible
substructures of helix pairs. In the evaluate module, we wish to rank the
potential structures using multiple sources of knowledge and expertise.

One question we are faced with is how to integrate these diverse knowledge
sources. This question is addressed by incorporating an architecture that will
allow us to discard any of the structures that are infeasible (based on physical
or chemical constraints) and determine which of the remaining structures is
most likely to be closest to the correct structure. We apply FORR (FOrr
the Right Reasons) [Epstein, 1994], a cognitive architecture for learning and
problem solving by consensus among heuristic rationales, to integrate our
multiple sources of knowledge.2

Each rationale in a FORR-based system is implemented as a resource-
limited procedure called an Advisor. Some of the Advisors we are currently
implementing for our system are The side chain Advisor, which examines
pairs of residues that are in contact in the model and determines, given
their possible side chain configurations, whether the predicted locations are
feasible, and the contact map Advisor, which compares the contact map of
the predicted model with the contact map for the problem description. We
anticipate that the final system will have between 20 and 30 expert advisors
that will participate in the evaluation process.

Each Advisor comments (assigns a value) to a potential problem solution.
The ultimate decision of the system is based on a weighted sum of these
individual comments. For more details of how this system will work see
Glasgow et. al. (in press).

2The FORR system has been successfully applied to the development of problem solving
systems for the domain of path finding in grid-world mazes [Epstein, 1998] and for the
domain of finite-board games [Epstein et al., 1998]. Similar to our molecular domain, these
previous applications involve spatial reasoning and rely on multiple (possibly conflicting)
sources of expertise.
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3 Implemented Modules: Retrieval and Adap-

tation

Our current focus is on predicting the alignment, or relative location, in 3D
space of α-helix pairs given the contacts between their residues.

Case retrieval Module

Cases are organized (indexed) in the case base by class of structure: α do-
mains, β domains and α/β domains. When initiating a retrieval, only cases
that match the class of the input protein are considered. For the purpose of
this paper we considered proteins in the α domain.

For each query map Csm,sn
we retrieve proteins that contain substructures

(pairs of secondary structures) with contact maps most similar to Csm,sn
.

A similarity measure for comparing the query contact map with maps
generated from structures in the PDB was derived using techniques from
machine vision, where we consider the black regions to be the image within
the array. We were less concerned about the dimensions of the map, than
what it looked like in terms of shape and location of black regions (regions
which contain contacts). For example, Figure 4 illustrates three different
maps for pairs of helices, where maps (a) and (c) are considered similar to
one another, and (b) is different from the other two.

First we blur the images using Gaussian smoothing [Gonzalez and Woods, 1992].
This is often done to remove unwanted details and noise. Contacts are treated
as black points, and points surrounding them are turned some shade of gray
depending on their distance from the nearest contacts. The grayscale tone is
determined by a Gaussian distribution where the contacts are the means.

The maps are then morphed a technique called closing, which removes
low-valued points but keeps the rest of the image intact [Gonzalez and Woods, 1992].

The retrieval of similar contact maps involves a two-tiered approach.
Given a query contact map, the first tier uses three general content descrip-
tors to cull the dataset of dissimilar contact maps: quadtrees, color and edge
distributions, and gray-level co-occurrence matrices.

Quadtrees have been successfully applied to image compression, com-
parison, and classification. The quadtree [Sullivan and Baker, 1994] is a hi-
erarchical data structure used to represent images. For an image, a two-
dimensional region is recursively decomposed into quadrants where each
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quadrant is a node in the quadtree.
Color distribution [Smith and Chang, 1994] is a common feature used in

image retrieval. Pixel color values are put into a histogram form: colors are
discretized and counted and placed in bins. Global histogram representation
has the drawback of loss of location, shape, and texture information. As
a result images retrieved based on similar color distributions may not be
semantically related.

Edge detection [Won et al., 2002], and the features that can be extracted
from it, is commonly used as a content descriptor of images. In this work we
use the Canny edge detection [Canny, 1986] method. The Gaussian smooth-
ing was necessary for this step to work, as it uses gradients and cannot be
applied to binary images. Our measure of similarity based on edge detection
involves comparing histograms showing the frequency of edges with angles of
0o, 45o, 90o, and 135o.

A statistical mathod that considers the spatial relationshp of pixels, the
gray-level co-occurrence matrix (GLCM) [Haralick et al., 1973] is a texture
analysis method from which various statistical features can be extracted.
Each entry (i, j) in the GLCM corresponds to the number of occurrences of
the pair of gray levels i and j which are a distance d apart in the original
image. For example, if d is 1, then GLCM entry (1, 2) will contain the number
4 if there are four instances of gray value 1 adjacent to gray value 2 in the
original image. In analysis, the GLCM are normalized so the histogram or
features extracted can be compared.

A committee of these general content descriptors is used in the first tier
of retrieval. Quadtrees vectors were generated from the binary, smoothed,
and morphed contact maps. The color and edge distributions and gray level
co-occurrence matrices were obtained from the smoothed contact maps. The
committee results in a set of contact maps which are present in the retrievals
of two or more general content descriptors. We determined empirically that
100 retrievals for each descriptor is sufficient. The results of the committee
are then used in the second tier of retrieval.

For the second tier, the Jaccard’s distance [Jaccard, 1908] was calculated
between each contact map from the first tier and the query map. Because the
maps vary in size, a sliding window approach was used to determine the best
matching regions between the query and the contact maps from the first tier.
The best mapping regions also provide registration of residues for evaluation
using RMSD. The best 25 retrievals were then selected from the 100 as the
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final set of contact maps to be returned.

Adaptation Module

The retrieval process returns, for each query contact map, potential helix
pairs from the PDB, ranked in order of estimated similarity. For each query
map, the adaptation phase of CBR transfers the structure information from
the highest-ranking structures to the input case.

Transferring locations requires a mapping function – that is, a set of
alignments that determine which residues in the target structure map to
which residues in the retrieved source structure. This is achieved by first
aligning the contact maps so that the mean cell location of contacting amino
acid residues in the retrieved structure aligns with the mean cell location of
contacting residues in the target. Then all amino acid residues in the target
structure that have corresponding residues in the source structure are given
the coordinate information from these residues. Usually there remain some
target residues with no coordinates (i.e., no corresponding residue in the
known structure). Since α-helices tend to have a consistent structure, the
missing coordinates are filled in using general domain knowledge. Specifically,
each turn of an α-helix is estimated at 5.4 Å along the helix axis and each
turn at 5 Å across. Using this information and the helix axis, calculated from
the filled-in locations, our system is able to infer these unmatched residue
locations. Figure 5 illustrates the portions of the helices that are determined
through our mapping function and those constructed from domain knowledge
(grown area).

Given this implementation and our overall hypothesis, our refined hy-
pothesis is that CRB using contact map similarity can effectively generate
accurate protein substructure predictions.

Results

We applied the retrieval and adaptation components of the CBR system to
a set of 61 proteins, mostly all α chains, retrieved from the PDB.3

3the proteins were 1a0aA, 1a1z , 1a28A, 1acp , 1afrA, 1aj8A, 1akhA, 1akhB, 1am9A,
1aoiA,
1aoiB, 1arv , 1auiB, 1auwA, 1bbhA, 1bcfA, 1bgp , 1bh9A, 1bh9B, 1bu7A,
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For each protein, we computed the distance map, contact map and sec-
ondary structure contact map. From the contact maps, we were able to
derive 422 maps that described contacts for pairs of helices.

N Mean Std MeanBest Rank
100 1.8604 0.8035 0.5259 7.5
50 1.6498 0.6447 0.5303 7
25 1.3944 0.5077 0.5506 5
10 1.1919 0.4166 0.6034 3

Table 1: The retrieval results of the committee on 422 unique queries when
the top N out of 100 are returned as the final set of contact maps.

The results of the retrieval process for 422 unique test queries are shown
in Table 1. N is the number of cases retrieved; Mean describes the average
RMSD for the queries and Std is the average standard deviation. Mean
Best and Rank describe the average best RMSD and its median rank within
the final set of contact maps. The results suggest the following: 1) as N,
the number of retrieved cases, decreases the average RMSD of the final set
of contact maps improves, 2) the Mean Best represents the best structure
match and worsens as N decreases, and 3) as N increases from 25 to 50 to
100, the Mean Best does not change significantly.

Further examination of the 100 retrievals using the committee determined
that 65.40% of the 422 queries have its best RMSD fall within the top 10
retrievals, 83.18% within the top 25 and 96.45% within the top 50. Thus,
a final set of contact maps consisting of the top 25 retrievals from a set of
100 seems to be the best balance between a low average RMSD over all the
retrievals and a low RMSD for the average best retrieval. This ensures all
the retrievals are similar to the query and contains the best match in ∼ 83%
of the cases.

Using the results of the retrievals module, we evaluated the adaptation
method by comparing the predicted locations of the residues to the actual
locations, as given in the Protein Data Bank (PDB) in terms of RSMD. The

1bvb , 1c52 , 1cc5 , 1cem , 1cktA, 1cll , 1cpq , 1csh , 1cy5A, 1d9cA,
1dceB, 1dpsA, 1ea1A, 1eerA, 1eteA, 1fce , 1fgjA, 1ft1B, 1furA, 1gakA,
1hcrA, 1hnr , 1hryA, 1huuA, 1hyp , 1kx2A, 1lbd , 1lfb , 1lis , 1lmb3,
1mhyD, 1neq , 1pbwA, 1pru , 1rzl , 1tc3C, 1tx4A, 1uxc , 2af8 , 2hddA, 2ilk .
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n RMSD
1 3.6668
5 2.2667
10 1.8814
25 1.5286
50 1.3921
100 1.3011
200 1.2507
422(all) 1.2426

Table 2: Experimental results when considering the adaptation of the top N
results. RMSD denotes the mean of the best scores for each of the 422 input
cases for the top N retrievals.

results when considering the top N retrievals, for N = 1, 5, 10 25, 50, 100,
200, and 422 are presented Table 2. These results suggest that we converge
to a good solution when considering about the top 50 solutions.

Note that the retrieval scores for the Mean Best (in terms of RMSD dis-
tance between the correct and predicted structures) are less than the adap-
tation scores (which reported the distance between the retrieved structures
and the correct structure). The reason for this is that the retrieval scores
are based on the RMSD of only the regions of the helices in contact with
each other. The adaptation method extends the helices beyond the regions
of contact based on biochemical knowledge, affording more opportunity for
error.

4 Related Work in CBR

The issue of visual knowledge in case-based reasoning has attracted the at-
tention in of researchers in several areas. Below we relate our work to some
representative case-based problem solving systems with emphasis on systems
that use visio-spatial knowledge.

FABEL [Gebhardt et al., 1997] is an example of a case-based system that
adapts diagrammatic cases in the domain of architectural design. In FABEL,
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the source diagram specifies the spatial layout of a building or similar struc-
ture. FABEL adapts source diagrams by extracting and transferring specific
structural patterns to the target problem. It uses domain-specific heuristics
to guide pattern extraction and transfer.

REBUILDER [Gomes et al., 2003] is a case-based reasoner that does re-
trieval, mapping, and transfer of software design class diagrams. The dia-
grams are represented structurally, not visio-spatially, however. This means
that, for example, what that the connection is between two nodes is more
important than the length and direction of that connection. That is, RE-
BUILDER works with a different level of visual abstraction, a level at which
only the structural relationships, such as top-ofconnectedness, between vi-
sual elements are relevant to the task. Determining the right level of visual
abstraction for visual case-based problems requires additional research. The
choices made by REBUILDER depend largely on the specific domains in
which they operate. In REBUILDER’s domain of software design class dia-
grams, only the structural relations appear to be important.

FAMING [Faltings and Sun, 1996] is a case-based reasoning system that
uses cases describing physical mechanism parts. FAMING uses the SBF
(Structure-Behavior-Function) ontology to describe the cases. The structure
is described in terms of a metric diagram (a geometric model of vertices
and connecting edges), a place vocabulary (a complete model of all possi-
ble qualitative behaviors of the device), and configuration spaces (a compact
representation of the constraints on the part motions). Shape features can
involve two objects, expressing, for example, one part’s ability to touch an-
other part. Human designers are necessary for FAMING’s processing. The
designer chooses which cases and functions should be used, which dimensions
the system should attempt to modify, and which shape features should be
unified. It uses qualitative kinematics to propose design solutions for the de-
sired function following the designer-suggested idea. Though not described as
a visio-spatial system, the important parts of physical mechanisms of the sort
FAMING uses inevitably contain much knowledge that could be construed
as spatial or visual.

DIVA [Croft and Thagard, 2002] is an analogical mapper that uses visio-
spatial representations, using the Java Visual Object System. It does no
transfer of problem solutions and uses the ACME architecture for mapping
[Holyoak and Thagard, 1997].

Non-visual case-based problem-solving systems, such as CHEF [Hammond, 1990]
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and PRODIGY [Veloso, 1993] provide interesting points of comparison re-
garding the transfer process. CHEF is a case-based reasoner that trans-
fers and adapts cooking recipes from a source to a target. The Prodigy
case-based reasoning system implements the theory of Derivational Analogy
[Veloso, 1993]. It models transfer using memories of the justifications of each
step, allowing for adaptation of the transferred procedure. Traces, called
“derivations”, are scripts of the steps of problem solving, along with the
justifications for why the steps were chosen over others.

The Galatea system [Davies and Goel, 2001] uses only visio-spatial rep-
resentations of problem-solving procedures and transfers a source solution to
a target solution. By using a sufficiently abstract visual language (Covlan) it
is able to transfer problem-solving procedures between semantically distant
analogs. The work on Galatea also supports the notion that visio-spatial
representations are useful for problem-solving.

Previous visual CBR work in molecular biology domains include visu-
alizing crystallographic data at different resolutions [Glasgow et al., 1993,
Glasgow et al., 1995, Hennessy et al., 2000, Jurisica et al., 2001a, Jurisica et al., 2001b],
in drug design [Biname et al., 2004, Glasgow et al., 2004], and in in-vitro fer-
tilization [Jurisica and Glasgow, 2000].

Non-visual bioinformatics CBR research includes a system that finds gene
sequences that produce proteins [Shavlik, 1991], a predictor for unknown
regulatory regions in genes [Aaronson et al., 1993], a planner for experiments
for finding protein sequences [Kettler and Darden, 1993], the prediction of
angles between amino acid residues in a protein chain [Zhang and Waltz, ],
and the prediction of secondary structure elements in a primary sequence
[Leng et al., 1993].

5 Discussion

Previous methods for the recovery of 3D structure from distance contact
maps are mostly based on distance geometry and stochastic optimization
techniques. Nigles et al. ([Nilges et al., 1988]) applied distance maps and
dynamical simulated annealing to determine the 3D structure of proteins.
More recently Venruscolo et al. ([Vendruscolo et al., 1997]) proposed a dy-
namic approach that generates a structure that has a contact map similar to
the query contact map.
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In this paper we described and demonstrated the applicability of the
CBR methodology to the problem of secondary structure alignment from
contact maps. Our hypothesis was that CRB using contact map similar-
ity can effectively generate accurate protein substructure predictions. Our
system retrieves protein substructures based on visual similarity of contact
maps. Initial results suggest that the retrieve and adapt phases are successful
in finding similar contact maps in the PDB and modifying these to predict
the alignment of pairs of helices, supporting this hypothesis. The advantage
and novelty of our approach lies in its use of multiple sources of knowledge,
including existing structural knowledge from the PDB, expert and text book
knowledge, as well as knowledge mined from the database.

Future work will include implementation of the other modules of our
system. Once the viability of the approach is shown to be effective with
idealized contact maps, the predicted, error-prone contact maps can used as
input.

The theory behind this work is that changing representations can provide
novel similarity insights. In this work we use contact maps and treat them
as binary images, applying image processing techniques to them to retrieve
similar protein substructures. This is in contrast with, for example, Jurisica
et al. ([Jurisica et al., 2001a]), who retrieve based on generated attributes. In
the adapt module, the information transferred is purely spatial. The success
of this method for α-helix pair structure prediction provides preliminary
support for this theory, in that generated visio-spatial representations can
provide a means to find similarity. Future work will compare the results
of contact map retrieval to sequence homology retrieval to investigate in
exactly which conditions contact map similarity (representing visio-spatial
representations) is superior to the non-visual homology similarity metric.
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Distance map Contact map

Figure 1: Distance map and contact map for the protein Bacterioferritin
(Cytochrome B1). The axes represent the residues of the protein starting
from the N terminus (bottom left corner). In the distance map, darker colors
correspond to closer distances. For the contact map, black areas correspond
to values of 1, where residues are in contact (within 10Å of one another).
Secondary structures are easily recognizable in a contact map: α-helices
appear as thick bands along the main diagonal; β-sheets appear as thin
bands parallel and perpendicular to the main diagonal.
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Figure 2: Secondary structure contact map for the protein Bacterioferritin
containing 11 secondary structures.
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Figure 3: The sub-contact CHelix−6,Helix−8 map for a pair of helices in protein
Bacterioferritin. Since the diagonal band shows contacts that extend from
the beginning of helix 6 and end of helix 8, to the end of 6 and beginning of
8, we can discern that the helices are oriented anti-parallel to one another.
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(a) (b) (c)

Figure 4: Illustration of similar, (a) and (c), contact maps and a map (b)
that is dissimilar to the other two.
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Figure 5: In this figure the lower helix is the target and the upper is the
source. The dotted gray circle represents the mapping area. The locations of
the target amino acid residues for which there are no cooresponding source
residues are inferred based on the known geometry for helices. These “grown”
areas are represented with the dotted black line.
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