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ABSTRACT 
A presentation of an Artificial Intelligence (AI) called 
Visuo that stores and guesses quantitative visual-spatial 
magnitudes (e.g., sizes of objects). In this analysis, Visuo is 
used to store polar (angle and distance) relationships 
between objects in images. It uses a database of tagged 
images as its memory and approximates unexperienced 
magnitudes by analogy with semantically related concepts. 
This shows the transferring of information from high 
semantically related concepts yielding significantly higher 
accuracy in angle and distance estimations over using 
medium or low semantically similar items.  

Author Keywords 
Creativity, imagination, visualization, analogy. 

ACM Classification Keywords 
I.2.0 General---Cognitive simulation 

I.6.4 Model Validation and Analysis.  

General Terms 
Theory. 

INTRODUCTION 
Human visual imagination is an incredibly complex 
cognitive phenomenon.  Imagining a scene draws on our 
memory to populate the scene with relevant scene objects in 
varying fidelity. Recent evidence suggests further that the 
same brain regions involved in vision are also involved in 
visual imagination, suggesting that we in fact, in some 
sense, see the products of our own mind [5, 7]. When 
imagining a scene intended to mimic the real world, the 
creative process has to produce objects of an appropriate 

colour, size, et cetera to fit the intended context of the 
scene. Imagined scenes are populated with the right kinds 
of objects for the intended context. Furthermore, how 
objects in an imagined scene relate to each other spatially is 
typically determined realistically. For example, when 
imagining a bird in the sky, such a scene might also involve 
secondary objects such as trees, the ground, the sun, among 
others. All elements included in the scene will have spatial 
relationships to each other. In an image of such a scene, the 
bird in the sky will be an appropriate angle and distance 
from the trees, while the trees will be an appropriate angle 
and distance from the sky and the ground, and on it 
continues until all objects are spatially related to each other. 

Our theory is that visual imagination exploits regularities in 
experience. When we imagine a realistic scene, the visual-
spatial properties of that scene end up being the way they 
seem because that is how they occur to us through our 
experience. Grass is on the ground, trees are above the 
ground, and the sky is above the trees; and that is how we 
experience them. When we take photographs, these 
regularities get stored digitially (see Figure 1). We propose 
that an AI designed to perform human-like imagination can 
exploit the visual-spatial information contained in digital 
photographs to inform the visualization of imagined scenes. 

There are times, however, when we might want to imagine 
a scene containing objects in contexts we have never 
experienced them in. Extrapolating from the example 
above, perhaps the imagined bird in the scene is a raven. 
Although you have never seen one outside of a bird 
identification guide, you know, more or less, what a raven 
looks like. You might know that crows, which are often 
seen, are very similar to ravens.  Could an analogy relating 
ravens to crows be used to fill in the details of our imagined 
scene with the raven? Apart from looking similar, crows are 
likely to have similar spatial relationships to trees and the 
other elements of the scene. Would the same likely hold 
true if the analogous object was less similar? Would any 
bird have similar spatial relationships? Would any animal? 
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Figure 1. ‘tree-grass’.  To interpret this picture, consider the 
centre to represent ‘tree’. Each dot represents an instance of 

the relationship between ‘tree’ and ‘grass’ in our image 
database. As expected, the grass appears below trees in most 

cases. 

This paper presents an extension to a Python program, 
Visuo, intended to model visual-spatial instantiation [2,5].  
Shown already to predict sizes of analogous objects when 
using size modifying adjectives (e.g., ‘large’), for the 
present work, Visuo has been extended to store angles and 
distances. This paper will provide an answer to the above 
questions by evaluating Visuo’s storage of angle and 
distance relationships between two objects of high, 
medium, and low semantic similarity. We hypothesize that 
the spatial relationships between items of high semantic 
similarity will approximate a target relationship with greater 
accuracy than those of medium or low semantic similarity. 

VISUO 
Visuo is a program written in Python intended to be a 
model of memory for quantitative data, and as a model for 
re-instantiating quantitative information from known priors   
as well as using analogy to instantiate quantitative 
information for cases that have not been experienced. For 
example, Visuo has been shown to predict the size of target 
objects, such as large raven, when it had information on 
raven sizes but not the target large raven. Having data on 
the size of one object, say all ravens, data on a semantically 
similar object, say the size of crows, and data on the size of 
the same semantically similar object with a linguistic 
modifier, such  as large crow, Visuo was able to predict the 
size of a large raven [2].  

Visuo implements two phases: a training phase and a 
visualization phase. While previous papers have addressed 
both phases, this paper is primarily concerned with the 
training phase and comparing the results thereof.  While we 
have developed a method for instantiating spatial 
relationships, this method remains largely untested.  
Therefore, our discussion of theory will be limited to the 
assumptions and processes of the training phase. 

Visuo is trained by reading text files with numerous entries. 
In this particular application of Visuo, the text file describes 

spatial relationship data (angle and distance) between object 
pairs. For example, a single entry could be for the spatial 
relationship of a raven to a tree, consisting of a description, 
“raven <relationship> tree”; a value for angle, 
“angle=27.45”; and a value for the distance between the 
two items, “distance=200.43”. Each entry read by Visuo is 
called an ‘experience,’ Angles are measured in degrees and 
distances are percentages of a picture divided by 100. For 
example, the distance of 200.43 is approximately 2% of an 
image away. All angles and distances used to train Visuo 
were taken from images of uniform size.   

Training 
Visuo implements two types of memory: episodic memory 
and semantic memory. Exemplars, Visuo’s implementation 
of episodic memories, represent memories of objects 
occurring at a specific place and time [12]. As Visuo’s 
episodic memory is not involved in the present analysis, we 
will concentrate on its semantic memory. 

Semantic Memories are memories of general concepts 
abstracted from specific instances [11]. When Visuo 
experiences a relationship for the first time both an episodic 
and a semantic memory are formed. With every following 
instance of the same general relationship, new episodic 
memories are formed, and the semantic memory is 
modified, with the new information being incorporated with 
the old. Semantic memories in Visuo are called prototypes. 

Distribution of Fuzzy Set Membership 
While Visuo experiences precise quantitative values, the 
precision is not stored in semantic memory. Behavioural 
data show that people represent with graded membership in 
categories [9]. To account for this, each perceptual detector 
in Visuo represents using fuzzy-set perceptual categories. In 
fuzzy set theory, the membership of an instance in a given 
set is described with a fuzzy membership value ranging 
from 0 (clearly not in the set) to 1 (clearly a member of the 
set). In the present analysis, Visuo employs a category set 
for distance and a category set for angle. For a relevant 
example, a crisp input of “10” becomes a vector of 
membership values in for a set of fuzzy number categories 
[4]. We will describe what exactly these numbers are in the 
following subsections.  

Every crisp number gets distributed as a member of all 
fuzzy number categories to some degree. Membership 
degrees are represented by a real number between 0 and 1. 
For example, a crisp number 10 would have a high 
membership in a fuzzy number set 8, and a lower 
membership in a fuzzy number sets for 2 and 15. 
Fuzzification is the process of transforming a crisp number 
to a fuzzy number. A separate distribution is created for 
each distance and angle pair. 

Representation of Distance 
Dehaene, et al. [3] provides evidence that people naturally 
(without educational intervention) represent distance 
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logarithmically. Therefore, Visuo uses a 15 point, 
approximate logarithmic scale (0, 2, 5, 10, 20, 35, 65, 100, 
160, 150, 400, 600, 900, 1350, 1800) as categories for 
distances. The fuzzy categories have overlapping ranges 
and input values will be distributed across relevant 
categories. For example, a distance of 10 (1% of a picture in 
distance) would be represented as the vector (0.0, 0.0, 0.67, 
1.00, 0.33, 0.0, …). Each value in that vector represents a 
membership in the fuzzy number set described above. 

Representation of Angle 
Huttenlocher, Hedges, and Duncan [10] provide evidence 
for the use of polar coordinates (angle and distance) as well 
as angular categories in object location estimation. Visuo 
uses a 16-point scale with 22.5-degree intervals for 
estimating angle (180, 157.5, 135, 112.5, 90, 67.5, 45, 22.5, 
0, -22.5, -45, -67.5, -90, -112.5, -135, -157.5). Similarly, the 
fuzzy angular categories have overlapping ranges, with 
values distributed across relevant categories.  For example, 
an angle of 45 degrees is represented by the vector (0, 0, 0, 
0, 0, 0.5, 1.0, 0.5, 0, …). Each value represents degree of 
membership in the fuzzy number sets (e.g., 0.5 membership 
in 22.5-degrees set). 

Incorporating New Data 
Visuo creates a prototype for each tag pair (e.g., tree-grass). 
For each novel prototype experienced, Visuo creates a 
fuzzy distribution for distance and a fuzzy distribution for 
angle. Instead of creating a new vector for angle and 
distance, for each repeated tag pair, Visuo incorporates the 
new data into the old. When a new example of a previously 
experience tag pair is observed, each fuzzy membership 
number in the distribution is replaced by a recursive 
average: 

 

where  is the previous value,  is the new value, and 
 is the number of experiences. Following the calculation 

of , the count  is increased by one. For each fuzzy 
number in the vector, the prototype represents the mean 
value of the membership for exemplars for the 
corresponding fuzzy number. In this way, the prototype 
represents and average of all experiences. For example, 
there would be a prototype storing a distribution 
representing all of the angles ever experienced between a 
tree and grass.  

Inferring Missing Data Through Analogy 
While Visuo uses prototypes to instantiate visual 
descriptions of scenes, it need not rely on exact matches in 
memory of the intended visualization.  

 

When data is missing from Visuo’s experience, it will use 
analogy (in this case, semantic similarity) to approximate 
the desired data. For example, in the database used in the 
present analysis (see below), there is no instance of a raven 
above grass in Visuo’s experience. If Visuo is asked to 
visualize a raven above grass, instead of reporting that no 
data is available, it will find the closest semantically related 
item to one of the targets and use that data as an 
approximation. Visuo uses the Wu-Palmer similarity 
measure [14] as implemented in NLTK version [1] of 
WordNet [8]. The Wu-Palmer similarity measure is squared 
to help bias for similarity. 

EVALUATION 

Data 
The Peekaboom [13] image database is a database with 
point clouds and tags for elements in the images.  We used 
approximately 50,000 images from the Peekaboom database 
and mined approximately 200,000 unique spatial 
relationships, for both angle and distance between tagged 
item pairs. We used the centroids of the point clouds as an 
indicator of the location of each tagged element.  The 
database uses images from the internet, including 
photographs, advertisements, drawings, etc. It was not 
filtered.  

Of the ~200,000 unique spatial relationships (tag pairs), we 
chose to work with the 100 pairs with the largest number of 
instances to maximize the number of data points per tag 
pair. These top 100 spatial relationships are called the target 
pairs. Of each target pair, the first tag is the static tag and 
the second the dynamic tag. To determine semantic 
relatedness, the static tag remained the same and the 
dynamic tag was replaced. For example, with the pair 
grass-raven, ‘grass’ would be the static element while a 
suitable match, based on semantic similarity, would be 
found for ‘raven’.  Using the data from our database, ‘crow’ 
has the highest similarity to raven and the prototype of 
grass-crow would be used as the source concept for the 
analogy. 

After selecting the target pairs, three test replacements for 
the dynamic targets were found and sorted into groups of 
high (Wu-Palmer similarity2 0.7 – 0.9), medium (Wu-
Palmer similarity2 0.34 – 0.69), and low (Wu-Palmer 
similarity2 0 – 0.33) similarity. The new targets were 
selected to maximize the degree to which they represented 
their group: maximizing similarity for the high group, 
maximizing closeness to the middle for the medium group, 
and as dissimilar as possible for the low group. A minimum 
of 25 data points was required for replacement tags to be 
included. 
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Procedure 
For each of the 100 target pairs, Visuo was trained on all 
the pairs and the vectors for angle and distance for each pair 
were stored in text files. The training was conducted across 
two different computers, utilizing 2 CPUs on each 
computer. Due to a file-reading error resultant from the 
attempted concurrent use of a single database file, 1 target 
pair was excluded from the present analysis. Thus, a total of 
99 target pairs, resulted in 4 (target, high, medium, and low) 

 training sessions. Each training session 
produced one distribution for angle and one distribution for 
distance, resulting in 792 distributions. 

If our hypothesis is correct, the predicted angles and 
distances between the elements of each target pair should be 
closest to the actual angles and distances when analogizing 
from the high-similarity group, and furthest when 
analogizing from the low-similarity group. The medium-
similarity group’s accuracy should fall somewhere in 
between. 

Results 

Angle 
The high-angle group was a significantly better 
approximation than the medium-angle group (Wilcoxon 
test, z = -10.77, p < .01, r = -1.08). The low-angle group 
was also significantly worse than the medium-angle group 
(z = -8.34, p < .01, r = -0.84). The high-angle group was 
also significantly better than the low-angle group (z = -
18.62, p < .01, r = -1.87). 

For statistical analysis, data was grouped on a per-test-pair 
basis. For each test pair, categories for distance were coded 
1-15, allowing us to group each logarithmic distance 
category for each test pair. Likewise, categories for angle 
were coded 1-16, categorizing the angle categories. Because 
the present analysis is aimed at testing how well pairs in the 

different groups approximate the target pairs, differences 
between the target and high, target and medium, and target 
and low pairs were calculated. Figure 2 illustrates a 
comparison for target, high, medium, and low groups for 
one sample target pair. Table 1 contains a summary of the 
mean differences across membership vectors for all 99 item 
pairs. While the mean differences may seem small, recall 
that the 0-1 range is distributed across 15 items and 16 
items for distance and angle, respectively. For perspective, 
the average membership for the target pair in the angle 
group is 0.125 and the average membership for the target 
pair in the distance group is 0.130. An average difference of 
0.1159 (see Table 1) is larger than it might initially appear 
without this perspective. As shown in Table 1, the mean 
membership decreases (increasing difference) as semantic 
similarity decreases. 

Distance 
Wilcoxon tests between the high-distance group and the 
medium-distance group revealed that the high group was 
significantly more accurate than the medium group, (z = -
10.73, p < .01, r = 1.08). The low-distance group was also 
significantly less accurate than the medium-distance group, 
(z = -7.43, p < .01, r = 0.75). The high-distance group was 
also significantly more accurate than the low-distance group 
(z = -15.96, p < .01, r = 1.67). 

Discussion 
The results above are very encouraging as a preliminary 
analysis into the use of analogy to supplement spatial 
relationship data. Moreover, they are particularly promising 
when one considers the sources of error and variance. 

The first source of error comes directly from our data. Due 
to the nature of the Peekaboom data collection (point cloud 
creation), the point clouds around the elements in a picture 
are inexact. Furthermore, the outside boundary (convex 

Figure 2. Angle (left) and distance (right) vector comparison for target pair glasses-shirt. 

 Mean Membership 
Difference, High 

Semantic Similarity 

Mean Membership 
Difference, Medium 
Semantic Similarity 

Mean Membership 
Difference, Low 

Semantic Similarity 

Distance Membership  0.0377 0.0685 0.0971 

Angle Membership  0.0634 0.0924 0.1159 

Table 1. Mean fuzzy membership difference for high, medium, and low semantic similarity groups. 

220



hull) of point cloud may not perfectly outline the tagged 
object it is meant to identify. These point clouds were used 
to calculate a centroid and therefore, the larger the error in 
the point cloud, the larger the error in the centroid. 

Secondly, due to availability of data, there was a good deal 
of variance in the precise similarity values within a group. 
For example, there are instances where tag pairs that have a 
high degree of semantically similar are at the lower bound 
of the high category and medium semantically similar items 
are at the upper bound of the medium category, which 
results in items with similar semantic similarities to the 
dynamic target. Although our results suggest that this 
source of variance is acceptable in the present analysis, 
future work will address this issue to maximize semantic 
similarity. In this future analysis, we would expect a close 
approximation of the target group by items restricted to 
some minimum semantic similarity. That said, there are still 
a number of data filtering issues yet to resolve. 

One issue yet to resolve is the use of centroids as specifying 
an object’s location. Using centroids is a simple approach in 
determining an object’s location but can be misleading in 
terms of data extraction.  For instance, in an image where a 
bird appears in the sky, the centroids become meaningless 
as the sky surrounds the bird. More complex relationships 
such as ‘in’ will require specific detectors that go beyond 
angle and distance. 

CONCLUSION 
Human visual imagination is an important and largely 
unaddressed problem in the cognitive sciences. While 
creating computer programs that can combine multiple 
experiences to produce imagination-like scenes presents an 
intriguing software engineering problem space, creating 
programs that can create scenes in novel and realistic ways 
goes beyond that and begins to explore the nature of 
creativity. Our running theme throughout this paper has 
been to advocate the use of analogy to apply semantically 
related data to visualizations otherwise impossible for an AI 
to instantiate. While one AI approach to our problem space 
is to get larger and larger databases, we aim to adopt more 
human-like solutions. 

We have shown in this paper that using high semantic 
similarity is a plausible candidate for analogical visual-
spatial reasoning. By showing that high semantic similar 
items more closely approximate angle and distance data 
than do medium or low semantic similar items, we have 
given reason to investigate this use of analogy further. For 
instance, an appropriate next step would be to determine 
what minimal degree of similarity is required for analogous 
relationships to reliably approximate their targets. 
Furthermore, qualitative analyses on the distributions such 
as the ones in Figure 1 has suggested that there is perhaps 
some form of categorizing possible for the spatial 
relationships as some distributions seem ideal for 
visualization, while other distributions appear flat. 

The work that has been presented here represents a module 
in a much larger project of simulating visual imagination. 
As discussed in the introduction, knowing how elements in 
a novel image should be organized spatially is an essential 
step in having AIs capable of producing realistic scenes. 
Also part of our aim is to explain how human imagination 
works. It is our hope that by implementing a model of 
imagination, that the model can act as a tool for guiding the 
scientific inquiry into the nature of human imagination.  

Visuo, we expect, will be at the heart of our imagination 
model. Visuo itself represents a theory about how we learn 
certain concepts and relationships, and how we store and 
retrieve quantitative data. Visuo does not explicitly make 
rule-based concepts such as ‘trees are always above the 
grass.’ Instead, rules that capture the regularities of 
experience emerge as an average of experience. The cluster 
of dots in Figure 1, for example, provide compelling 
qualitative evidence that at least some concepts might 
emerge that way. That some method of storing and 
retrieving quantitative data is required for visual 
imagination is obvious, whether the theory behind Visuo 
holds is yet to be seen. While in the present study we have 
validated the approach of using semantic similarity to 
supplement a database, we are also carrying psychological 
experiments to determine if humans use similar approaches 
when approximating data. 
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