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Abstract. We present a computational model of case-based visual problem 
solving. The Galatea model and the two experimental participants modeled in it 
show that 1) visual knowledge is sufficient for transfer of some problem-
solving procedures, 2) visual knowledge facilitates transfer even when  
non-visual knowledge might be available, and 3) the successful transfer of 
strongly-ordered procedures in which new objects are created requires the  
reasoner to generate intermediate knowledge states and mappings between the 
intermediate knowledge states of the source and target cases. We describe Gala-
tea, the two models created with it, and related work.  

1   Introduction 

Experimental evidence shows that visual knowledge often plays a role in case-based  
reasoning [2,7,11]. Why might this be? What functions do the visual representations 
serve in retrieval, adaptation, evaluation and storage of cases?  These questions are 
very broad because they pertain to a variety of cognitive phenomena ranging from 
visual perception to external memory to mental imagery. In order to explore these 
issues deeply, in the following discussion we focus exclusively on case-based prob-
lem solving. Problem solving involves generating a procedure which may contain a 
number of steps. We will call procedures with the following two properties “strongly-
ordered procedures:” 1) two or more steps are involved, and 2) some steps cannot be 
executed before some other steps have already been executed. Case-based problem 
solving is taking a solution from a source case and applying that solution or a modifi-
cation of it to a target case. 

Many past case-based systems in problem-solving domains have used visual 
knowledge and have supported visual reasoning (e.g., ARCHIE [13]. AskJef, [1]). 
However, these systems typically contain multi-modal cases, i.e., cases that contain 
both visual (e.g., photographs, drawings, diagrams, animations and videos) and non-
visual knowledge (e.g., goals, constraints, plans and lessons). As a result, the precise 
role of visual knowledge in case-based problem solving remains unclear. In contrast, 
the present work deals with cases that contain only visual knowledge. Further, past 
case-based systems such as ARCHIE and AskJef leave the adaptation task to the user 
and do not automate the transfer of diagrammatic knowledge from a source case to a 
target problem. The present work directly addresses the transfer task in case-based 
problem solving.  
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Some domains are replete with visual information (e.g. libraries of CAD files, pho-
tograph databases), but others that need not explicitly contain visual information can 
be visually represented all the same. For example, effectively connecting a battery to 
wires might be represented, among other ways, functionally (the battery needs to be 
physically in contact with the wire so it can conduct electricity) or visually (the image 
of the end of the wire is adjacent to the image of the battery). Even though other kinds 
of knowledge and representations of these domains might be used to reason, human 
beings often claim to experience visual imagery when reasoning about them. The first 
hypothesis of this work is that visual knowledge alone is sufficient for automatic 
transfer of problem-solving procedures in some domains. The second hypothesis is 
that visual knowledge facilitates transfer even when non-visual knowledge might be 
available.  One important implication of this hypothesis is that cases that when repre-
sented non-visually are semantically distant, could be represented in visually similar 
ways, thus facilitating transfer.  

In this paper we describe the Galatea computational model, which, given a source 
problem-solving case and a target problem case, both represented visually, can solve 
the problem by transferring the solution from the source to the target case.  We pre-
sent Galatea and models of two human experimental participants implemented with it. 
The data we modeled comes from a cross-domain case-based problem-solving ex-
periment [3].  Here we focus on two participants, L14 and L22.  The source case (see 
Figure 1) is about a laboratory that needs to keep contaminated air from entering from 
the outside through its single door. The solution is to put in an airlock or vestibule, so 
that air is less likely to blow through both doors at once. 

The unsolved target case describes a weed trimmer at the end of an arm that ex-
tends from the side of a truck. It clips the grass and weeds along the side of the road. 
The problem is that street signs get in the way.  The task is to make the arm so that it 
can pass through the street signs. The transferred solution is to make an arm with a 
vestibule: While one door lets the sign into the vestibule, the other supports the arm. 
Then the first door closes, supporting the arm, and the second opens to release the 
sign on the other side. L14 was one of the participants who successfully solved this 
problem. The marks L14 made on his or her paper can be seen in Figure 2. 

In the following section we will describe Galatea, using our model of L14 as a run-
ning example.  

2   Galatea 

The modeling architecture used to model L14 is an implemented LISP computer pro-
gram called Galatea. The issue is how a case-based problem solver might represent its 
diagrammatic knowledge of the source case and target problem, and how might it 
transfer the relevant problem-solving steps from the source to the target? 

Galatea represents a source case as a series of knowledge states starting from the 
initial knowledge state and ending in the final or goal knowledge state. A knowledge 
state is represented diagrammatically in the form of shapes, their locations, sizes, and 
motions (if any), and the spatial relationships among the shapes.  
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Fig. 1. L14’s stimulus 

 

Fig. 2. The inscriptions L14 made on his or her experiment sheet 

Succeeding states in the series of knowledge states are related through visual trans-
formations such as move, rotate, scale and decompose. Each transformation relates 
two knowledge states. Transfer works by applying, step by step, each transformation 
in the source case to the knowledge states of the target case (See Figure 3). 
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Source S-image1 Source S-image2 Source S-image n 

Target S-image 1 Target S-image 2 Target S-image n 

mapping mapping mapping 

Source Analog 

Target Analog 
Output by reasoner 

 

Fig. 3. Galatea’s processing in the abstract 

2.1   Knowledge Representation  

Galatea describes visual cases using Covlan (Cognitive Visual Language), which 
consists of knowledge states, primitive elements, primitive relations, primitive trans-
formations, general visual concepts, and correspondence and transform representa-
tions.  In Covlan, all knowledge is represented as propositions relating two elements 
with a relation. 

Knowledge States: Knowledge states in Covlan are symbolic images, or s-images, 
which contain visual elements, general visual concepts, and relations between them. 
Cases are represented by a series of s-images, connected with transformations. 

Visual Transformations. An s-image in the sequence is connected to other s-images 
before and after it with transformations. Transformations, like ordinary functions, take 
arguments to specify their behavior.  

These transformations control normal graphics transformations such as translation 
(move-to-location), and rotation (rotate). In addition there are transformations for 
adding and removing elements from the s-image (add-element, remove-element). 
Certain transformations (start-rotating, stop-rotating, start-translation, stop-
translation) are changes to the dynamic behavior of the system under simulation. For 
example, rotate changes the initial orientation of an element, but in contrast start-
rotating sets an element in motion.  

Primitive Elements are the visual objects in a diagram. The element types are rec-
tangle, circle, arrow, line, and curve. Each element is represented as a frame with 
attribute slots, such as location, size, orientation, or thickness. A particular example of 
an element is referred to as an element instance.  

General Visual Concepts. These act as slot values for the primitive elements as well 
as arguments for the visual transformations. The concepts are location, size, thickness, 
speed, direction, length, distance, angle, and direction. Each concept has several 
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values it can take. For example, the size can be small, medium, or large, and thickness 
can be thin, thick or very-thick. Location specifies an absolute qualitative location in 
an s-image (bottom, top, center, etc.)  

Primitive Visual Relations. This class of symbols describes how certain visual ele-
ments relate to each other and to the values taken by general visual concepts. The 
visual relations are touching, above-below, and right-of-left-of. The motion relation is 
rotation. 

Correspondence and Transform Representations. The knowledge of which objects 
in one s-image correspond to which objects in another is a mapping, which consists of 
a set of alignments between objects. Different sets of alignments compose different 
mappings. The ith s-image in the source and the ith s-image in the target have a corre-
spondence between them; each correspondence (or map) can have any number of 
mappings associated with it (determining which mapping is the best is the “mapping 
problem.”) The correspondence and mapping between the initial s-images (i=1) in the 
source and target is given as part of the input to Galatea; the system generates the 
subsequent correspondences and mappings.   

Similarly, successive s-images in a series have transform-connections.  These are 
needed so that Galatea can track how visual elements in a previous knowledge state 
change in the next.  

2.2   Algorithm 

Following is the control structure for Galatea’s transfer of problem-solving proce-
dures from a source case to the target problem. Figure 4 shows the s-image structure 
for L14’s problem and solution. The Figure references in the algorithm description 
below refer to Figure 4. 

Fig. 4. Outline of our model of L14. The six images along the top represent the source, and the 
six images along the bottom the target, left to right, are separated by transformations: 1) repli-

cate, 2) add connections, 3) add component, 4) another add component, and 5) add connections 

The solution procedure (for the source, and then for the target) is that the doorway 
mechanism gets replicated, and then moved to the correct positions. Two walls are 
created to complete the vestibule, and finally they are placed in the correct position so 
that the vestibule is complete.  
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1. Identify the first s-images of the target and source cases. These are the cur-
rent source and target s-images. 

2. Identify the transformations and associated arguments in the current  
s-image of the source case. This step finds out how the source case gets from the 
current s-image to the next s-image. The model of L14 involves five transformations 
(see Figure 4). The first transformation is replicate. The second transformation is add-
connections which places the door sets in the correct position in relation to the top and 
bottom walls. The third and fourth transformations are add-component, which adds 
the top and bottom containment walls. The fifth transformation, another add-
connections, places these containment walls in the correct positions in relation to the 
door sets and the top and bottom walls.  

3. Identify the objects of the transformations. The object of the transformation is 
what object the transformation acts upon. For L14’s first transformation, this object is 
the parts of the door in the first s-image (we’ll call it door-set-l14s1).  

4. Identify the corresponding objects in the target problem. In the target, the 
trimmer arm’s door mechanism is the corresponding object. 

5. Apply the transformation with the arguments to the target problem compo-
nent. A new s-image is generated for the target problem (bottom middle) to record the 
effects of the transformation.  Replicate takes two arguments: some object and some 
number-of-resultants. In this case the object is door-set-b1s1 (b1s1 means “base one, 
s-image two”) and the number-of-arguments is two. The replicate is applied to the 
first L14 s-image, with the appropriate adaptation to the arguments: The mapping 
between the first source and target s-images indicates that the door-set-b1s1 maps to 
the door-set-l14s1, so the former is used for the target’s object argument. The number 
two is a literal, so it is transferred directly. Galatea generates door-set1-l14s2 and 
door-set2-l14s2 in the next s-image. 

The second transformation is add-connections. The effect of this transformation is 
to place the replicated door-sets in the correct spatial relationships with the other 
element instances. It takes connection-sets-set-b1s3 as the connection/connection-set 
argument. This is a set containing four connections. Galatea uses a function to recur-
sively retrieve all connection and set proposition members of this set. These proposi-
tions are put through a function which creates new propositions for the target. Each 
proposition’s relation and literals are kept the same. The element instance names are 
changed to newly generated analogous names. For example, door1-endpoint-b1s3 
turns into door1-endpoint-l14s3. 

Then, similarly to the replicate function, horizontal target maps are generated, and 
the other propositions from the previous s-image are instantiated in the new s-image. 

The inputs to this transformation are nothing (a literal denoting that there is not any 
thing in the previous s-image that is being modified), the connection set connection-
sets-set-b1s3, the source s-image lab-base1-simage2, the current and next target s-
images l14-simage2 and l14-simage3, the mapping l14-simage2—l14-simage3-
mapping1, and the rest of the memory. 

6. Map the original objects to the new objects in the target case. A transform-
connection and mapping are created between the target problem s-image and the new 
s-image (not shown). Maps are created between the corresponding objects. In this 
example it would mean a map between door-sets, as well as their component objects. 
Galatea does not solve the mapping problem, but a mapping from the correspon-
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dences of the first s-image enables Galatea to automatically generate the mappings for 
the subsequent s-images.  

7. Map the new objects of the target case to the corresponding objects in the 
source case. Here the parts of the door set in the target s-image are mapped to the 
parts in the second source s-image. This step is necessary for the later iterations (i.e. 
going on to another transformation and s-image).  Otherwise the reasoner would have 
no way of knowing which parts of the target s-image the later transformations would 
operate on. 

8. Check to see if goal conditions are satisfied. If they are, exit, and the solution 
is transferred. If not, and there are further s-images in the source case, set the current 
s-image equal to the next s-image and go to step 1.  

We now present the main algorithm in pseudo code, followed by English descrip-
tions of some of its functions. 

Main 
Input: 
1. Source  
2. Target Problem  
3. Vertical mapping between source and target cases 
Output: 
1. A set of new target s-images 
2. Vertical mappings between corresponding source and 

target s-images 
3. Horizontal mappings between successive target states 
4. Transformations connecting successive target states 
Procedure 
While more-source-states(goal-conditions, memory) do 
 Current-target-s-image <- get-next-target-s-

image(target problem, current s-image) 
 Current-source-s-image <- get-next-source-s-

image(source, current-s-image) 
 Current-transformation <- get-

transformation(current-s-image) 
 Current-arguments <- get-arguments(current-

source-s-image) 
 Source-objects-of-transformation <- get-

target-object-of-trans(current-source-s-
image) 

 Current-vertical-mapping <- get-
mapping(current-target-s-image, current-
source-s-image) 

 Target-object-of-transformation <- get-source-
object-of-transformation(current-vertical-
mapping, source-objects-of-transformation) 

 Target-arguments <- adapt-arguments(get-
arguments(current-source-s-image) 

 Memory <- memory + apply-
transformation(current-transformation, tar-
get-object-of-transformation, target-
arguments) 

 Memory <- memory + create-horizontal-
mapping(current-target-s-image, get-next-
target-s-image) 
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 Current-target-s-image <- get-next-target-s-
image(target problem, current-s-image) 

 Current-source-s-image <- get-next-source-s-
image(source, current-s-image) 

 Memory <- memory + carry-over-unchanged rela-
tionships(applied-transformation) 

 Memory <- memory + create-vertical-
mapping(current-target-s-image, current-
source-s-image) 

 
Adapt Arguments. When an argument needs to be adapted to the target analog,  
Galatea looks at the argument and determines whether it is a literal, a function, or an 
element instance component of an s-image. Literals are returned verbatim. If the  
argument is a function (e.g. the number of people in a group) then Galatea applies the 
same function to the analogous group in the target and returns that value. If the argu-
ment is an element instance, then Galatea returns the analogous object in the target.  

Carry Over Unchanged Relationships. The get-analogous-chunks sub-function 
constructs and returns chunks that are identical to the input chunks, except that the 
symbols that have maps in the input mapping are replaced with those symbols they 
are associated with in those maps. The vertical map relationships are carried over as 
well, constituting the vertical maps for unchanged element instances. 

Creation of Horizontal Maps Between Changed Components. The creation-of-
horizontal-maps-between-changed-components is embedded in each of the transfor-
mations. The transformation results are obtained from running the transformation. 
The target-objects-of-transformation are known because they are the input to the 
transformation. The two lists are put in alphabetical order and maps are created be-
tween each nth list object. 

Creation of Horizontal Maps Between Unchanged Components. Similarly, crea-
tion-of-horizontal-maps-between-unchanged-components makes maps between old 
objects (the objects in the old s-image and new objects (from the current-s-image, 
minus the objects created by the transformation), alphabetizes them, and creates maps 
between the nth item in each list. 

Creation of Vertical Maps Between Changed Components. The algorithm for 
creating vertical maps between changed components takes as input the transformation 
results in the source and target, alphabetizes them, and creates maps between the nth 
item in each list. 

We can now evaluate what made L14’s data (Fig. 2) differ from the stimulus draw-
ing (Fig. 1): L14 features a longer vestibule in the drawing than the vestibule pictured 
in the stimulus. In fact, there is no trimmer arm (analogous to the wall in the lab prob-
lem) in the drawing at all that is distinct from the vestibule, save a very small section, 
apparently to keep the spinning trimmer blade from hitting the vestibule. The entire 
drawing is rotated ninety degrees from the source. The single lines in the source are 
changed to double lines in the target. The doors also slide in and out of the vestibule 
walls. What’s interesting about this modification is that it does not appear that this 
kind of door opening is possible with the diagram given of the lab in the source: Since 
the door is a rectangle that is thicker than the lines representing the walls, the door 
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could not fit into the walls. In contrast L14 explicitly makes the doors and walls thick 
(with two lines) and makes the doors somewhat thinner. L14 adds objects to the target 
not found in the source: a blade and a twisting mechanism to describe how the doors 
can work. L14 also included numerical parameters to describe the design of the trim-
mer: to describe length. Finally, L14 includes some mechanistic description of how 
the trimmer would work.  

Of these seven differences, our model successfully re-creates four of them. The ro-
tation of the source is modeled by a rotation in the target start s-image. In the s-image, 
all spatial relationships are defined only relative to other element instances in the s-
image. Each instance is a part of a single set which has an orientation and direction. In 
the case of s-image 1 of the target, it is facing right. Since all locations are relative, 
there is no problem with transfer and each s-image in the model of L14 is rotated to 
the right. The line to double line difference is accounted for by representing the vesti-
bule walls with rectangles rather than with lines, as it is in the source. Because the 
mapping between the source and target correctly maps the side1 of the rectangle to 
the startpoint of its analogous line, the rectangle/line difference does not adversely 
affect processing transfer. The long vestibule difference is accounted for by specify-
ing that the heights of the vestibule wall rectangles are long. In the source the vesti-
bule wall lines are of length medium, but this does not interfere with transfer.  The 
trimmer head added object is accounted for by adding a circle to the first s-image in 
the target.  

Unaccounted for are the two bent lines emerging from the vestibule on the left 
side, the numeric dimensions and words describing the mechanism. Also, L14 shows 
one of the doors retracting, and the model does not. The model also fails to capture 
the double line used to connect the door sections, because the single line is transferred 
without adaptation from the source. This could be fixed, perhaps, by representing the 
argument to the add-component as a function referring to whatever element is used to 
represent another wall, rather than as a line. 

3   The Galatea Model of Participant L22 

L22 worked on the same problem as L14 and received in his or her stimuli the image 
presented in Fig. 5.  The marks L22 made on the experiment sheet are reproduced in 
Fig. 6. Our model of L22 involves five transformations. The first transformation is 
replicate. To replicate the door mechanism, the starting state, s-image 1, must have a 
single door. A portion of the information in the first s-image of the source can be seen 
in Fig. 7. All of the objects in Fig. 7 are a part of door-set-s1. It takes in the door-set1-
s1 as an argument, generating door-set1-s2 and door-set2-s2 as output in the second 
s-image. There are three connected rectangles, corresponding to the top wall, door, 
and bottom wall. The second transformation is add-connections which places the door 
sets in correct position in relation to one another.  The third and fourth transforma-
tions are add-component, which add the top and bottom containment walls. The fifth 
transformation, another add-connections, places these containment walls in the cor-
rect positions in relation to the door sets.  
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Fig. 5. The image from the source stimulus that L22 received in the experiment. It is a top-
down view of the airlock. This stimulus’s text (not shown) is identical to that of L14 (Figure 1) 

 

Fig. 6. The marks L22 made on his or her experimental sheet 

Top-door-s1

Door-s1

Bottom-door-s1

Top-door-side3-s1

Door-side1-s1

Door-side3-s1

Bottom-door-side1-s1

Top-door-side3-s1—door-side1-s1--connection

Door-side3-s1—bottom-door-side1-s1--connection

 

Fig. 7. A portion of the first s-image of the L22 model. S1 refers to the fact that the symbols are 
in the first s-image. The top-door, door, and bottom-door are all in the door set that gets repli-
cated in transformation one 
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Fig. 8.  Outline of our model of L22. The six images along the top represent the source, and the 
six images along the bottom the target, left to right, are separated by transformations: 1) repli-
cate, 2) add connections, 3) add component, 4) add component, and 5) add connections 

The images along the top of Fig. 8 represent the source s-images. The images along 
the bottom of Fig. 5 show the sequence of target s-images. Only the first s-image of 
the target is given as input to the system. The rest are generated by Galatea. The circle 
depicted represents a cross-section view of the sign that must pass through the arm. 
The door mechanism in the arm, which gets replicated and connected up properly, is 
oriented differently than the door in the lab problem, but the transformations are gen-
eral enough to allow transfer.  In the bottom right s-image we can see the solution 
state, as generated by Galatea. The redundant door mechanism will allow the sign to 
pass through one, into the vestibule, while the other door keeps the structure in place. 
Then the first door can close, supporting the structure, while the second door opens to 
let the sign post out the other side.  

We can now examine what made L22 differ from the stimulus drawing: The entire 
drawing is rotated ninety degrees from the source.  An object is added to the target 
that has no analog in the source: the trimmer.  L22 features a proportionately longer 
vestibule than in the source, and has some explicit simulation diagrammed.  Of these 
differences, all but the last were modeled by changing the nature of the start s-image 
for L22. 

4   Related Work 

In the introduction, we noted that the issue of visual knowledge in case-based reason-
ing is very broad and thus has attracted the attention of many researchers in several 
areas.  In order to look at the issue deeply, we focused our discussion exclusively on 
case-based problem solving, i.e. case-based transfer of a procedure from a source case 
to a target case. Below we relate our work to some representative case-based problem 
solving systems with emphasis on systems use visual knowledge in transferring prob-
lem-solving procedures. 

FABEL [8] is an example of a case-based system that adapts diagrammatic cases in 
the domain of architectural design. In FABEL, the source diagram specifies the  
spatial layout of a building or similar structure.  FABEL adapts source diagrams by 
extracting and transferring specific structural patterns to the target problem. It uses 
domain-specific heuristics to guide pattern extraction and transfer. Galatea too adapts 
diagrams by extracting and transferring patterns. Pattern transfer in Galatea is facili-
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tated by three main elements. Firstly, Galatea explicitly represents the knowledge 
states of its source cases in the form of s-images. Secondly, each s-image is composed 
of primitive visual elements and relations. Thirdly, succeeding knowledge states in 
Galatea's source cases are related by primitive visual transformations. In this way, 
Galatea captures the diagrammatic problem solving of the source cases. Given a  
mapping between the visual elements in the target problem and a source case, this 
knowledge enables Galatea to extract and transfer the appropriate series of visual 
transformations from the source case to the target problem. In particular, the knowl-
edge states identify the names and arguments of specific transformations that need to 
be transferred from the source case to the target problem.  

REBUILDER [9] is a case-based reasoner that does retrieval, mapping, and trans-
fer of software design class diagrams. The diagrams are represented structurally, not 
visually, however. This means that, for example, that the connection is between two 
nodes is more important than the length and direction of that connection. That is, 
REBUILDER works with a different level of visual abstraction, a level at which only 
the structural relationships, such as connectedness, between visual elements are rele-
vant to the task. In contrast, Galatea takes into account additional geometric informa-
tion such as the length, direction and thickness of lines. What is the right level of 
visual abstraction for visual case-based problems requires additional research.  The 
choices made by Galatea and REBUILDER depend largely on the specific domains in 
which they operate. In REBUILDER’s domain of software design class diagrams, 
only the structural relations appear to be important.  

FAMING [6] is a case-based reasoning system that uses cases describing physical 
mechanism parts. FAMING uses the SBF (Structure-Behavior-Function) ontology to 
describe the cases. The structure is described in terms of a metric diagram (a geomet-
ric model of vertices and connecting edges), a place vocabulary (a complete model of 
all possible qualitative behaviors of the device), and configuration spaces (a compact 
representation of the constraints on the part motions.) Shape features can involve two 
objects, expressing, for example, one part's ability to touch another part.  Human 
designers are necessary for FAMING's processing. The designer chooses which cases 
and functions should be used, which dimensions the system should attempt to modify, 
and which shape features should be unified.  It uses qualitative kinematics to propose 
design solutions for the desired function following the designer-suggested idea. 
Though not described as a visual system, the important parts of physical mechanisms 
of the sort FAMING uses inevitably contain much knowledge that could be construed 
as visual.  However, FAMING modifies cases according to shape substitution, and, 
unlike Galatea, makes no attempt to transfer strongly-ordered procedures of any sort. 

Non-visual case base problem-solving systems, such as CHEF [10] and PRODIGY 
[14] provide interesting points of comparison regarding the transfer process. CHEF is 
a case-based reasoner that transfers and adapts cooking recipes from a source to a 
target. CHEF does not create intermediate knowledge states. This is because it does 
not transfer procedures that create new objects. The Prodigy case-based reasoning 
system implements the theory of Derivational Analogy. It models transfer using 
memories of the justifications of each step, allowing for adaptation of the transferred 
procedure. Traces, called “derivations,” are scripts of the steps of problem solving, 
along with the justifications for why the steps were chosen over others. PRODIGY 
too does not store the intermediate steps; instead it stores only a record of the changes 
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made to them. This means that the states can be inferred, but are not explicitly present 
in the case memory. CHEF and PRODIGY avoid the generation of intermediate 
knowledge states and mappings because the examples with which they have been 
implemented do not have procedures that create new objects. 

5   Conclusions 

In the introduction to this paper, we described the two main hypotheses of this work: 
(1) visual knowledge alone is sufficient for transfer of problem-solving procedures in 
some domains, and (2) visual knowledge facilitates transfer even when non-visual 
knowledge might be available. Both hypotheses were strongly supported by the evi-
dence described above, and we had an unexpected discovery of a third, which makes 
for three claims. 

First, visual knowledge is sufficient for transfer of some problem-solving proce-
dures. There are seven models written in Galatea that support this claim. We de-
scribed the models of L14 and L22 in this paper. We modeled two additional partici-
pants from the Craig et al. experiment, a historical example from the scientific think-
ing of Maxwell [5], the fortress/tumor problem [4] and the cake/pizza problem [4]. 
Each of these models uses case-based reasoning to solve a problem using only visual 
knowledge. The fact that four of these models are based on human experimental par-
ticipant data lend support to the hypothesis that this claim might apply to human prob-
lem solving, as well as artificial case-based reasoning systems, although more empiri-
cal research would be needed to substantiate this. As shown above, most of the differ-
ences between source and target, as displayed in the participant data, were accounted 
for in our models. In light of this research we can speculate for which domains visual 
knowledge might be sufficient for transfer of problem-solving procedures: those do-
mains, the solution procedures of which could be adequately described with descrip-
tions of changes to visio-spatial properties. A way to think about this is if the impor-
tant differences between the problem and the solution are reflected in visual differ-
ences, then that problem is likely to fall in this class. 

The second claim is that visual knowledge facilitates transfer even when non-
visual knowledge might be available. L22’s lab/weed trimmer problem involves 
physical systems that can be described visually or non-visually. Galatea’s visual on-
tology of primitive elements and transformations allows transfer between systems 
that, though they may be semantically distant, have visual similarities, which facili-
tates the transfer. This is also true for the three other lab/weed trimmer participants, as 
well as for the fortress/tumor example.  

In the course of building the models of Galatea, we discovered that the successful 
transfer of strongly-ordered procedures in which new objects are created requires the 
reasoner to generate intermediate knowledge states and mappings between the   in-
termediate knowledge states of the source and target cases. Galatea shows why, in 
detail, this is so.  Components of the problem are created by the operations, and these 
components are acted on by later operations. For L22’s problem, for example, the 
door set must be replicated before the two sets can be moved in relation to one an-
other. When the reasoner transfers the second operation of moving the door sets, how 
does it know what the corresponding objects are in the target? It must have some 
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mapping to make this inference. And since one of the door sets did not exist in the 
start states of the problems, this mapping cannot be given as input with the initial 
mapping. The new knowledge state with the duplicated door set must be generated, 
and then a mapping must be made on the fly between it and the second knowledge 
state of the source case. 
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