
SOILIE: A Computational Model of 2D Visual Imagination

Vincent Breault (breault_vincent@gmail.com)

Sébastien Ouellet (sebouel@gmail.com)

Sterling Somers (sterling@sterlingsomers.com)

Jim Davies (jim@jimdavies.org)

Institute of Cognitive Science, Carleton University

1125 Colonel By Drive, Ottawa, Ontario K1S 5B6 Canada

Abstract

The Science of Imagination Laboratory Imagination Engine
(SOILIE) is a program designed to imagine 2D scenes the
same way people do. It is composed of three modules: The
Oracle of Objects, Visuo, and a renderer. In the process of
creating a novel image, SOILIE creates image content, places
objects within said image and renders the final product.
Although work remains to be done, the engine is capable of
rendering images with coherent content and placement.

Keywords: imagination; modeling; procedural generation;
cognitive science; artificial intelligence; graphics; visual
reasoning

Introduction

The term “imagination” is typically used to describe two

different kinds of human cognitive processes: first, the

ability to be creative in general, and second, the ability to

generate simulations of world states, either real or fabricated,

in the mind. This paper focuses on the latter, in particular

visual imagination.

Imagination is implicated in a great number of cognitive

processes. People will often imagine scenes when hearing a

story or reading a novel, when planning physical action,

when recalling previous experiences, fantasizing about the

future, and when dreaming (Davies, Atance, Martin Ordas,

2011). Although visual imagination is often thought to be

identical with visual mental imagery, we view the rendering

of a mental image as a final, optional stage. The process of

rendering an imagined scene into neural “pixels” (colors at

particular locations) must be preceded by (mostly

unconscious) decisions regarding what is to be placed in the

image, and where. For example, if one is asked to picture “a

cat under a car,” one is likely to also picture a road or

driveway beneath the car and the cat. How does an

intelligent agent know to put a road beneath a car, or a sky

above a mountain range?

In this paper we describe a cognitive model of visual

imagination, and its implementation as a Python computer

program called SOILIE (Science of Imagination Laboratory

Imagination Engine).

Figure 1: SOILIE‟s imagined output given the query „eye‟

Theory of Visual Imagination

We are starting by modeling a relatively simple task: taking

as input a single word (the “query”) and creating a static 2D

image that contains other elements that are likely to appear

with the object described by the query word. The imagined

scene that is output does not contain any motion, physical

simulation, or depth. It does not change over time, nor does

it attempt to be creative in the sense of generating a

surprising or particularly interesting result. The goal is to

create realistic yet novel images.

In our model, the agent takes a single word as the impetus

to imagine, e.g., “car.” The task of the agent is to imagine a

car in a realistic scene. Using visual long term memories,

the agent populates the scene with other elements that are

likely to appear in an image with a car, such as a road. Once

the agent has decided what else should appear in the image

and where those elements should be placed, then the entire

scene is rendered into pixels, that is, points of colored light

at certain locations. In the case of people, different neurons

in the retino-topic visual cortex increase in firing frequency,

forming a mental image on which perceptual processes can

then operate (Kosslyn, 1994; 1995) (we acknowledge that

JimDavies
Typewritten Text

JimDavies
Typewritten Text

JimDavies
Typewritten Text

JimDavies
Typewritten Text

JimDavies
Typewritten Text

JimDavies
Typewritten Text

JimDavies
Typewritten Text

JimDavies
Typewritten Text
Breault, V., Ouellet, S., Somers, S. & Davies, J. (2013. SOILIE: A computational model of 2D imagination. In R. West & T. Stewart (Eds.), Proceedings of the 12th International Conference on Cognitive Modeling, Ottawa: Carleton University (unnumbered six page online proceedings).

the very existence of mental imagery in human beings

remains controversial: see Pylyshyn (1994) for a

counterargument). In our computer implementation, this

means creating a collage on the screen of objects generated

from pixels taken from various images in a database.

We assume that the sub-image of the query object appears

in the center of imagination‟s “visual field,” and the other

elements are placed around it appropriately. For example, if

imagining a car, the car would appear in the center of the

mind‟s eye, the road would go beneath it, the sky would

appear above it, and a person might be beside it.

System: SOILIE

The Science of Imagination Laboratory Imagination Engine

(SOILIE) is an implemented Python program composed of

multiple modules that together create a 2D visual scene

from a user-input query. In its current state, the engine takes

a single word query as input and returns an imagined 2D

image containing several elements related to the initial

query. The ultimate goal of SOILIE is to create imagined

visual scenes in the same way that humans do, and to

produce imaginings that resemble human imaginings given

the same input.

SOILIE uses large databases of labeled images as its

proxy for human visual experience. For each image, labels

are associated with particular pixels so that we know where

labels appear in the images. For example, if the label is

“car,” then the database knows the rough outline of the car

in the image, and we assume that all the pixels within that

outline represent light coming from the car to the camera.

The various modules of SOILIE use these datasets of

large quantities of labeled images to extract regularities such

as what type of labels tend to be found together and the

spatial relationships between labels. These extracted spatial

relationships are SOILIE‟s models of spatial memory. The

three subsystems will be presented: The Oracle of Objects,

Visuo, and the Renderer.

The Oracle of Objects

The first module is the Oracle of Objects (Astudillo, 2009).

Using data gathered from the game Peekaboom, this module

has information on image content. Peekaboom‟s data is a

collection of over fifty thousand labeled images with over

ten thousand labels that are used as representation of visual

memory. This database is the combination of two online

games: the ESP Game and Peekaboom (Von Ahn, Liu, &

Blum, 2006). These games are interactive systems where

players are paired over a server and each presented with the

same image. Without being allowed to communicate, the

players try to enter the same words to describe objects in the

images. Their answers are compared. When they enter the

same word, the label is kept and stored with the image in the

database.

This information was used in a second game called

Peekaboom, which used a similar strategy to find out where

in the images the objects were. One player would use mouse

clicks to reveal parts of an image to another player, whose

goal was to guess the label given to the first player. When

the second player guesses the right word, we assume that the

parts of the image revealed represent where the object is in

the image.

The result is that labels are associated with an image and

as point clouds on specific locations on the picture,

representing the location of the object. These games provide

the advantage of gathering accurate and diverse labeling

data on very large set of images in a fast and efficient way

(von Ahn & Dabbish, 2004).
The Oracle of Objects uses a matrix of co-occurrence

relations derived from Peekaboom‟s image content

information. This matrix holds the frequencies at which two

labels will appear in the same picture in the database.

Taking the top n labels that co-occur with a particular query

allows the module to determine which other objects should

be included in the imagined image. This method is called

the “top-n model” (see Vertolli & Davies, under review, for

our attempts to improve on this model).

In SOILIE, the Oracle takes the single word query, such

as the word “sky” and uses the database‟s co-occurrence

matrix to find the n items that co-occur with it most often

throughout all the labeled images. The specific number of

objects returned by the Oracle is ten but SOILIE takes only

the first three or four, as the likelihood of producing

incoherent images increases with the number of objects.

Furthermore, many objects would clutter the picture. This

parameter can easily be changed in the program. This

module's output thus determines descriptive content of the

image that is to be created. For example, given the query

“sky” and a target number of objects of four, the Oracle

would return the following: ['water', 'building', 'cloud',

'mountain']. The next module, Visuo, takes the objects from

this output to determine their relative positioning.

Visuo

SOILIE uses the Visuo module (Davies & Gagné, 2010;

Somers, Gagné, Astudillo & Davies, 2011) to find the

appropriate placement for each of the labels in the picture.

Visuo is a cognitive model implementing a theory of

quantitative spatial memory and the learning involved with

that memory, generation of imagined spatial magnitudes,

and analogy. For SOILIE, Visuo finds the appropriate

distance and angle between the query and each of the labels

chosen by the Oracle. Visuo takes in two labels, query and

object, and returns a location in the 2D canvas of the object

in relation to the query at the center. The distance is

represented as a percentage of space from center of the

image and the border of the frame.

The Peekaboom database contains information from

which we can easily infer distance and angle between any

two labels that co-occur in an image. Visuo was trained on

these for every pair of labeled objects, e.g., man – hat. The

input structures contain a pair of labels, linked by the term

“above.” We acknowledge that not everything is above

everything else; we use it only as a generic spatial relation

word. Each example of a pair of labels also contained values

for the attributes of distances and angle gathered from each

instance from the game. This is specifically represented in

the training file as follows:

name = [hat] above man

lexical_category = “preposition”

distance = 0.4253361716

angle = -93.909154542

There would be one such data structure for every instance

of a hat being above a man found in the database of images.

The angles and distances are not stored as crisp numbers,

but rather as a vector of fuzzy membership values for

particular ranges. So a single angle would be stored as a

vector of fuzzy membership values (between 0 and 1) within

a set of fuzzy number categories of angles in this set: [-

157.5, -135, -112.5, -90, -67.5, -45, -22.5, 0, 22.5, 45, 67.5,

90, 112.5, 135, 157.5, 180]. So, for example, 160 degrees is

more a member of the 157.5 fuzzy set, and less a member of

the 135 fuzzy set, etc.

Similarly, distance is stored as memberships in the

following categories of distance, which approximates the

logarithmic scale [0, 2, 5, 10, 20, 35, 60, 100, 160, 250, 400,

600, 900, 1350, 1800]. These numbers represent arbitrary

mental units and not any specific objective metrics. This

models the fact that people do not need any specific

culturally invented unit of measure to represent visuospatial

magnitudes (Gagné & Davies, 2010). When queried, these

fuzzy distributions are de-fuzzified and return a crisp

number indicating the value for the angle in terms of

relative degree with the main query and distance as a

percentage from the maximum distance to border of the

image frame.

Each instance from the example files is transformed into a

data structure in Visuo called an exemplar, and some

prototype memory is modified (or created if it does not yet

exist). These prototypes contain a fuzzy distribution of each

of the examples‟ attribute values for both the distance and

angle. For instance, the prototype “[hat] above man”

contains the distribution of values for each “[hat] above

man” example. The prototypes can thus be thought of as an

average of all experiences of a given pair of labels.

With the prototypes created for each pair of labels in the

Peekaboom database, Visuo has a large trained set of

distances and angles for pairs of labels that can be used to

determine placement of elements in SOILIE's imagined

image. In order to determine the value for specific pair of

labels, Visuo looks in its database for the specific prototype

matching the query. Once it has found it, it will transform

the fuzzy distributions of angle and distance into crisp

quantitative numbers, which SOILIE uses to place elements

in the image in relation to the query, which is in the center.

Following the previous example of the query “sky” and the

returned elements ['water', 'building', 'cloud', 'mountain'],

SOILIE would query Visuo with the following input:

[sky] above water

[sky] above building

[sky] above cloud

[sky] above mountain

This would, in turn, return the respective distance and

angle for these pair of objects. This output takes the

following form, the first number being the angle in degrees:

#sky

sky-water -86.6024480504 0.938798453022

sky-building 71.0785158959 0.879984377514

sky-cloud 83.6170496771 0.371586153984

sky-mountain 97.3158893841 0.55739012773

After this has been done for the each included element,

SOILIE knows what elements will be in the image, and

where they should appear. This scene description is sent to

the renderer to generate an image that can be seen on a

computer screen.

Lastly, Visuo also has the ability to estimate angles and

distance of pairs of label on which it has not yet received

training. When it is asked to get special information on a

novel pair of labels, Visuo will use the WordNet database

(Fellbaum, 1998) to determine the meaning of the

unrecognized words. It uses WordNet‟s semantic similarity

information to find a known pair that correlates highest with

the query. For example, if it does not have a prototype for

“Chevrolet above pug” it might return “car above dog,” for

which it does have a prototype.

Once the most correlated pair has been found, Visuo will

use its attribute distribution in place of the query‟s lack of

data. This allows the program to return approximate

information for labels it does not know based on semantic

comparison with what it does know.

Renderer

The last module is tasked with displaying the imagined

image. It takes as input the elements and their locations on

the canvas from two previous modules. The main query is

then placed in the center of the image and each of the other

items is placed around it according to the angle and distance

specified.

To get the necessary pixels for the rendering of the picture,

this module uses the images from the LabelMe database.

LabelMe is a “web-based annotation tool that allows easy

image annotation”. (Russell, Torralba, Murphy, & Freeman,

2008). This provided an effective tool to collect quantitative

information on annotated objects in the database. LabelMe

provides a drawing interface for users to specify the

boundaries of objects in an image as well as a label.

LabelMe‟s bounding boxes provide better outlines of

objects than the point clouds in the Peekaboom database.

LabelMe also has the advantage of using photographs from

the Web as opposed to all web images, which include

cartoons and logos. This allows SOILIE to use real-world

pictures of objects when rendering output.

 The LabelMe labels are indexed in a preprocessing stage,

before SOILIE is first run, where each label is associated

with images containing the label. An image is chosen at

random from the list corresponding to the queried label, and

the outline information is extracted. The corresponding

image file is then loaded into a PyGame 1.9 instance. In

order to avoid overly large objects taking too much of the

visual space, image files of more than 500 pixels wide are

halved in size. This prevents objects such as skies from

hiding other objects in the scene or unusually big items such

as ears from appearing too much out of proportion. A

polygon is drawn from the vertices corresponding to the

LabelMe outline, and the positions of the pixels inside the

polygon are kept as a mask, which is then applied to the

LabelMe image. The pixels under the mask are finally

displayed in the rendering window. The location is

determined by a vector given by Visuo, the initial point of

the vector is mapped to the center of the picture, and the

center of the bounding box of the pixels is mapped to the

terminal point of the vector.

Evaluation

The next section will qualitatively examine the strengths

and weaknesses of the current model through examples

from its output.

Figure 2: Result of the query „car‟

SOILIE is capable of generating a wide variety of images.

The Oracle of Objects‟ use of the coherence matrix as well

as Visuo's training on a large database and its ability to

approximate an appropriate value for distance and angle

through analogy allows SOILIE generates somewhat

coherent images. This has been supported with quantitative

evaluation in Somers, Gagne, Astudillo, and Davies (2011).

Every Figure in this paper depicts images generated by

SOILIE. Figure 2 shows the resulting rendered image based

on the query “car”. Given such a query, SOILIE returned

the following labels [„sky‟, „wheel‟, „road‟]. This is so

because they are labels that are often seen in the same image

as a car and thus were highest in the co-occurrence matrix.

From there, Visuo assumed the car to be in the center and

returned coherent placement for the other labels. The image

demonstrates the system‟s ability for coherent placement, as

the sky was placed above the car and both the road and the

wheel under it, like any human might expect from such a

scene.

Furthermore, the Oracle of Objects returns sets of objects

with a relatively high coherence. Table 1 shows several

examples of the Oracle‟s output when given certain queries.

As one can see, the use of the top-n items in the co-

occurrence matrix permits the creation several coherent of

sets of item.

Table 1: Sample label output.

Query Returned Labels

Sky [„water‟, „building‟,

„cloud‟, „mountain‟]

Tree [„building‟, „water‟,

„house‟, „grass‟]

Table [„woman‟, „people‟,

„food‟, „chair‟]

Dog [„grass‟, „ear‟,

„puppy‟, „man‟]

Bed ['window', 'woman',

'sleep', 'room']

Mouse [„rat‟, „computer‟,

„animal‟, „keyboard‟]

It should however also be noted that in its current state,

SOILIE has very low context sensitivity when the query has

strongly correlated words from different contexts, such as

homonyms. One such example is the word “mouse,” which

can refer to both computer mouse and the animal. The

engine currently has no way of differentiating these two

contexts and if two labels are correlated enough, they will

come out in the image (we address this problem in our lab‟s

forthcoming paper: Vertolli & Davies, under review). Figure

3, in which a computer mouse is partially hidden by a

groundhog and a deer, clearly demonstrates the integration

of the two contexts of mouse in a single image. Queried

with the word mouse, the Oracle returns ['rat', 'computer',

'animal', 'keyboard'], showing no discrimination of the

mouse as animal and as computer hardware. This is

problematic as it can create serious incoherence in resulting

images.

Furthermore, it has no concept of meronyms. This means

that the system does not know that a bird has a beak or that

faces have noses. But because they are strongly correlated in

the database, it is highly probable to get an image containing

both a picture of a bird and one of a beak. Figure 2 is an

example of this. The query „car‟ has returned wheel but one

can clearly see that the car pixels returned already feature

wheels, so the additional wheel was unnecessary. Table 1

also demonstrates this problem as the query dog returned the

label „ear‟ even though it is not a necessary addition as ears

are already parts of dogs. Our laboratory‟s future work will

address this problem as well. Also note that `puppy‟ was

returned, showing that SOILIE also fails to ignore

synonyms.

Figure 3: Result of the query „mouse.‟ Note that it appears

that an image of a groundhog was incorrectly labeled as

„rat‟ in the LabelMe database.

Another drawback is Visuo‟s current lack of information

on diverse attributes. Although it currently has a lot of data

on distances and angles, it knows nothing of other attributes

such as size or depth. For instance, it can tell that a cap is

close to a head but in the actual rendering of the scene, there

is no data on the relative size of the cap and the head,

possibly creating images with set of objects with poor

proportions. Figures 1, 2 and 3 all demonstrate SOILIE‟s

lacking of the size attribute. In figure 2, the wheel is

significantly bigger than it should be for the size of the car

and Figure 3 shows a computer that is disproportionately too

small for the size of the keyboard and the mouse. Using the

current database for Visuo training, Peekaboom, such

information would be hard to acquire as it does not contain

boundary information about its labels or depth information,

rendering the extraction of relative size quite difficult

without sophisticated computer vision techniques.

Figure 2 also demonstrates some of the rendering errors.

Because the rendering engine uses the center of the object to

determine placement, it ignores the object‟s boundaries. In

Figure 2 the road cuts the wheel in half and in Figure 1 by

the nose overlapping with the mouth. This makes for images

with inappropriately overlapping objects.

Another problem that arises in the rendering stage is that

when the Oracle of Objects returns the label „ear‟ when

queries with `dog‟. The renderer finds an image of an ear

and places it on the canvas. Unfortunately, the current

system has no way to determine whether the picture file it is

using contains a dog ear or a human ear or, again as in

Figure 2, if the mouse file contains an image of an animal or

a computer hardware.

Figure 4 demonstrates quite eloquently most of the

current rendering module‟s shortcomings. Although the

„ear‟ was placed above and to the side of the dog‟s head, it

overlaps greatly with it because the object‟s boundaries are

not taken into consideration. It can clearly be seen that the

engine used a human‟s ear for a dog‟s ear and the lack of

objective size information made the ear significantly bigger

than the dog itself.

Figure 4: Result of the query „dog‟

Discussion

The first implemented model of mental imagery was done

by Kosslyn and Shwartz (1977). The system used a polar

coordinate pixel system that successfully modeled some

psychological findings of mental imagery, including 1)

taking longer to generate more complex images, boundaries

of the mind‟s eye, rotation, scaling, and incremental

increase in detail according to attention shifting. The system

could work with two images: a chair and a car. This model

can be included in a range of implemented “array theories”

that eventuate in pixel placement, some explicitly symbolic

(e.g., Glasgow & Papadias) and some connectionist (e.g.,

Stucki & Pollack, 1992). These models do not speak to how

elements are selected for inclusion in the scene, but provides

a more realistic model of the final stage of imagination. In

contrast, our approach uses the final image that is output

primarily for demonstration purposes. Future work might

incorporate a more realistic model of the visual cortex for

the rendering stage.

 Cognitive scientists tend to agree that humans do not

store bitmap-like (depictive) representations in long-term

memory, but rather proposition-like (descriptive) encodings

of scenes (Kosslyn, 1994). Our system uses photos from

LabelMe to get elements for display in the imagined scene.

We do not believe that human beings do it this way.

However, how people generate depictive representations

from descriptive ones is a mystery.

 Computer scientists have created programs that design

and render (Ebert et al., 2003). These systems are not

designed to be cognitive models. In this field it is typically

not called “imagination”, but goes by names such as

procedural generation, synthesis, dynamic generation,

procedural modeling, procedural synthesis, and visualization.

 In terms of content, such systems tend to focus on one of

the following categories: faces and people, plants, terrain,

planets, interiors, or cities. What is more interesting about

these systems are the methods used: *either grammars*,

explicit knowledge, or fractals.

 Grammars use explicitly coded rules that describe

acceptable expressions to determine what gets placed where.

For example, chairs should appear surrounding a table.

 Explicit knowledge might use templates or cases to define

what things should look like. For example, there might be a

rule that says that all rooms must have doors. As in many AI

applications, explicit knowledge of this kind tends to be

brittle, expensive to encode, and generates contradictions as

the knowledge base grows.

 Fractal methods, which are primarily used for natural

systems such as plants or terrains, use mathematical

descriptions. Fractals are self-similar at different scales. The

branching of a tree from a trunk resembles the branching of

smaller branches from the original branch, and so on. Many

natural phenomena, particularly ones that maximize area in

a finite space, can be modeled with fractals.

Conclusion

SOILIE is able to take a user input of a single word and

generate a rendered image of a 2D scene depicting the query

word and several associated images, in more or less the

correct places. Although the placement of sub-images in the

final canvas makes sense if you know what it is doing, the

images are admittedly unlike our internal experiences of

imagery, and appear rather like surrealistic art pieces. Future

work should improve the images.

In particular, the problems faced are 1) incoherent label

choice (particularly with homonyms), 2) the system‟s

misunderstanding of part-whole relationships (meronyms), 3)

a misunderstanding of kind with respect to parts and wholes

(a dog‟s ear versus a human ear) and 4) lack of information

about size. Future work will address these problems, as well

as improve the nature of the output using pixel interpolation

to fill in blank spaces (Hays & Efros, 2007; Feiner, 1985),

to create a more realistic neural model of the rendering.

References
Astudillo, C. (2009). Co-Occurrence of Objects in an Image.

Website. Retrieved from

http://ing.utalca.cl/~castudillo/research/pkb/co_ocurren

ce/form.php

Davies, J., Atance, C. & Martin Ordas, G. (2011). A

framework and open questions on imagination in

adults and children. Imagination, Cognition, and

Personality, Special issue on mental imagery in

children. 31:1-2, 143-157.

Davies, J. & Gagné, J. (2010). Estimating quantitative

magnitudes using semantic similarity. Conference of

the American Association for Artificial Intelligence

workshop on Visual Representations and

Reasoning (AAAI-10-VRR), 14--19.

Ebert, D. S., Musgrave, F. K., Peachey, D., Perlin, K., &

Worley, S. (2003). Texturing and modeling, 3rd

Edition: A procedural approach. San Francisco, CA:

Elsevier Science.

Feiner, S., (1985). APEX: An Experiment in the Automated

Creation of Pictorial Explanations. IEEE Computer

Graphics and Applications, 5(11), 29-37

Fellbaum, C. (Ed.) (1998). WordNet: An Electronic Lexical

Database. MIT Press.
Glasgow, J., & Papadias, D. (1992). Computational

imagery. Cognitive Science, 16, 355-394.

Hays, J., Efros, A. A. (2007). Scene Completion Using

Millions of Photographs. ACM Transactions on

Graphics (SIGGRAPH 2007), vol. 26, no. 3

Kosslyn, S. M. (1994) Image and Brain: The Resolution of

the Imagery Debate. MIT Press, Cambridge, MA.

Kosslyn, S. M., Thompson, W. L., Kim, I. J., & Alpert, N.

M. (1995). Topographical representations of mental

images in primary visual cortex. Nature, 378(6556),

496-498.

Kosslyn, S. M. & Shwartz, S. P. (1977). A simulation of

visual imagery. Cognitive Science 1, 265--295.

Pylyshyn, Z. W. (1994). Mental pictures on the brain.

Nature, 372, 289-290.

Russell, B. C., Torralba, A., Murphy, K., Freeman, W.,

(2008), LabelMe: a database and web-based tool for

image annotation, International Journal of Computer

Vision, vol. 77, Issue 1-3.

Somers, S., Gagné, J., Astudillo, C., & Davies, J. (2011).

Using semantic similarity to predict angle and distance

of objects in images. In Proceedings of the 8th ACM

Conference on Creativity & Cognition (pp. 217-222).

Atlanta, Georgia.

Stucki, D. J., & Pollack, J. B. (1992). Fractal (reconstructive

analogue) memory. Proceedings, fourteenth annual

conference of the cognitive science society. Hillsdale,

NJ: Erlbaum

Chen, T., Cheng, M., Tan, P., Shamir, A., Hu, S., (2009)

Sketch2Photo: internet image montage, ACM

Transactions on Graphics (TOG), v.28 n.5,

Vertolli, M. O. & Davies, J. (under review) Visual

imagination in context: Retrieving a coherent set of

labels with Coherencer. Submitted to ICCM 2013.

von Ahn, L., and Dabbish, L. (2004) Labeling Images with a

Computer Game. ACM Conference on Human Factors

in Computing Systems (CHI)

von Ahn, L., Lui. R., & Blum. M. (2006) Peekaboom: A

game for locating objects in images. In Proceedings of

the SIGCHI conference on Human Factors in

computing system (pp. 55-64). AC

http://dl.acm.org/citation.cfm?id=1618470&CFID=307930982&CFTOKEN=61689682
http://dl.acm.org/citation.cfm?id=1618470&CFID=307930982&CFTOKEN=61689682
http://dl.acm.org/citation.cfm?id=1618470&CFID=307930982&CFTOKEN=61689682

