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Abstract 

The Science of Imagination Laboratory Imagination Engine 
(SOILIE) is a program designed to imagine 2D scenes the 
same way people do. It is composed of three modules: The 
Oracle of Objects, Visuo, and a renderer. In the process of 
creating a novel image, SOILIE creates image content, places 
objects within said image and renders the final product. 
Although work remains to be done, the engine is capable of 
rendering images with coherent content and placement. 

Keywords: imagination; modeling; procedural generation; 
cognitive science; artificial intelligence; graphics; visual 
reasoning 

Introduction 

The term “imagination” is typically used to describe two 

different kinds of human cognitive processes: first, the 

ability to be creative in general, and second, the ability to 

generate simulations of world states, either real or fabricated, 

in the mind. This paper focuses on the latter, in particular 

visual imagination.  

Imagination is implicated in a great number of cognitive 

processes. People will often imagine scenes when hearing a 

story or reading a novel, when planning physical action, 

when recalling previous experiences, fantasizing about the 

future, and when dreaming (Davies, Atance, Martin Ordas, 

2011). Although visual imagination is often thought to be 

identical with visual mental imagery, we view the rendering 

of a mental image as a final, optional stage. The process of 

rendering an imagined scene into neural “pixels” (colors at 

particular locations) must be preceded by (mostly 

unconscious) decisions regarding what is to be placed in the 

image, and where. For example, if one is asked to picture “a 

cat under a car,” one is likely to also picture a road or 

driveway beneath the car and the cat. How does an 

intelligent agent know to put a road beneath a car, or a sky 

above a mountain range?  

In this paper we describe a cognitive model of visual 

imagination, and its implementation as a Python computer 

program called SOILIE (Science of Imagination Laboratory 

Imagination Engine).  

 

Figure 1: SOILIE‟s imagined output given the query „eye‟ 

Theory of Visual Imagination 

We are starting by modeling a relatively simple task: taking 

as input a single word (the “query”) and creating a static 2D 

image that contains other elements that are likely to appear 

with the object described by the query word. The imagined 

scene that is output does not contain any motion, physical 

simulation, or depth. It does not change over time, nor does 

it attempt to be creative in the sense of generating a 

surprising or particularly interesting result. The goal is to 

create realistic yet novel images.  

In our model, the agent takes a single word as the impetus 

to imagine, e.g., “car.” The task of the agent is to imagine a 

car in a realistic scene. Using visual long term memories, 

the agent populates the scene with other elements that are 

likely to appear in an image with a car, such as a road. Once 

the agent has decided what else should appear in the image 

and where those elements should be placed, then the entire 

scene is rendered into pixels, that is, points of colored light 

at certain locations. In the case of people, different neurons 

in the retino-topic visual cortex increase in firing frequency, 

forming a mental image on which perceptual processes can 

then operate (Kosslyn, 1994; 1995) (we acknowledge that 
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the very existence of mental imagery in human beings 

remains controversial: see Pylyshyn (1994) for a 

counterargument).  In our computer implementation, this 

means creating a collage on the screen of objects generated 

from pixels taken from various images in a database.  

We assume that the sub-image of the query object appears 

in the center of imagination‟s “visual field,” and the other 

elements are placed around it appropriately. For example, if 

imagining a car, the car would appear in the center of the 

mind‟s eye, the road would go beneath it, the sky would 

appear above it, and a person might be beside it.  

System: SOILIE 

The Science of Imagination Laboratory Imagination Engine 

(SOILIE) is an implemented Python program composed of 

multiple modules that together create a 2D visual scene 

from a user-input query. In its current state, the engine takes 

a single word query as input and returns an imagined 2D 

image containing several elements related to the initial 

query. The ultimate goal of SOILIE is to create imagined 

visual scenes in the same way that humans do, and to 

produce imaginings that resemble human imaginings given 

the same input.  

SOILIE uses large databases of labeled images as its 

proxy for human visual experience. For each image, labels 

are associated with particular pixels so that we know where 

labels appear in the images. For example, if the label is 

“car,” then the database knows the rough outline of the car 

in the image, and we assume that all the pixels within that 

outline represent light coming from the car to the camera. 

The various modules of SOILIE use these datasets of 

large quantities of labeled images to extract regularities such 

as what type of labels tend to be found together and the 

spatial relationships between labels. These extracted spatial 

relationships are SOILIE‟s models of spatial memory. The 

three subsystems will be presented: The Oracle of Objects, 

Visuo, and the Renderer. 

The Oracle of Objects 

The first module is the Oracle of Objects (Astudillo, 2009). 

Using data gathered from the game Peekaboom, this module 

has information on image content. Peekaboom‟s data is a 

collection of over fifty thousand labeled images with over 

ten thousand labels that are used as representation of visual 

memory. This database is the combination of two online 

games: the ESP Game and Peekaboom (Von Ahn, Liu, & 

Blum, 2006).  These games are interactive systems where 

players are paired over a server and each presented with the 

same image. Without being allowed to communicate, the 

players try to enter the same words to describe objects in the 

images. Their answers are compared. When they enter the 

same word, the label is kept and stored with the image in the 

database.  

This information was used in a second game called 

Peekaboom, which used a similar strategy to find out where 

in the images the objects were. One player would use mouse 

clicks to reveal parts of an image to another player, whose 

goal was to guess the label given to the first player. When 

the second player guesses the right word, we assume that the 

parts of the image revealed represent where the object is in 

the image.  

The result is that labels are associated with an image and 

as point clouds on specific locations on the picture, 

representing the location of the object. These games provide 

the advantage of gathering accurate and diverse labeling 

data on very large set of images in a fast and efficient way 

(von Ahn & Dabbish, 2004).  
The Oracle of Objects uses a matrix of co-occurrence 

relations derived from Peekaboom‟s image content 

information. This matrix holds the frequencies at which two 

labels will appear in the same picture in the database. 

Taking the top n labels that co-occur with a particular query 

allows the module to determine which other objects should 

be included in the imagined image. This method is called 

the “top-n model” (see Vertolli & Davies, under review, for 

our attempts to improve on this model).  

In SOILIE, the Oracle takes the single word query, such 

as the word “sky” and uses the database‟s co-occurrence 

matrix to find the n items that co-occur with it most often 

throughout all the labeled images. The specific number of 

objects returned by the Oracle is ten but SOILIE takes only 

the first three or four, as the likelihood of producing 

incoherent images increases with the number of objects. 

Furthermore, many objects would clutter the picture. This 

parameter can easily be changed in the program. This 

module's output thus determines descriptive content of the 

image that is to be created. For example, given the query 

“sky” and a target number of objects of four, the Oracle 

would return the following: ['water', 'building', 'cloud', 

'mountain']. The next module, Visuo, takes the objects from 

this output to determine their relative positioning.  

Visuo 

SOILIE uses the Visuo module (Davies & Gagné, 2010; 

Somers, Gagné, Astudillo & Davies, 2011) to find the 

appropriate placement for each of the labels in the picture. 

Visuo is a cognitive model implementing a theory of 

quantitative spatial memory and the learning involved with 

that memory, generation of imagined spatial magnitudes, 

and analogy. For SOILIE, Visuo finds the appropriate 

distance and angle between the query and each of the labels 

chosen by the Oracle. Visuo takes in two labels, query and 

object, and returns a location in the 2D canvas of the object 

in relation to the query at the center. The distance is 

represented as a percentage of space from center of the 

image and the border of the frame.   

The Peekaboom database contains information from 

which we can easily infer distance and angle between any 

two labels that co-occur in an image. Visuo was trained on 

these for every pair of labeled objects, e.g., man – hat. The 

input structures contain a pair of labels, linked by the term 

“above.” We acknowledge that not everything is above 

everything else; we use it only as a generic spatial relation 

word. Each example of a pair of labels also contained values 



for the attributes of distances and angle gathered from each 

instance from the game. This is specifically represented in 

the training file as follows:  

 
name = [hat] above man 

lexical_category = “preposition” 

distance = 0.4253361716 

angle = -93.909154542 

 

There would be one such data structure for every instance 

of a hat being above a man found in the database of images. 

The angles and distances are not stored as crisp numbers, 

but rather as a vector of fuzzy membership values for 

particular ranges. So a single angle would be stored as a 

vector of fuzzy membership values (between 0 and 1) within 

a set of fuzzy number categories of angles in this set: [-

157.5, -135, -112.5, -90, -67.5, -45, -22.5, 0, 22.5, 45, 67.5, 

90, 112.5, 135, 157.5, 180]. So, for example, 160 degrees is 

more a member of the 157.5 fuzzy set, and less a member of 

the 135 fuzzy set, etc.  

Similarly, distance is stored as memberships in the 

following categories of distance, which approximates the 

logarithmic scale [0, 2, 5, 10, 20, 35, 60, 100, 160, 250, 400, 

600, 900, 1350, 1800]. These numbers represent arbitrary 

mental units and not any specific objective metrics. This 

models the fact that people do not need any specific 

culturally invented unit of measure to represent visuospatial 

magnitudes (Gagné & Davies, 2010). When queried, these 

fuzzy distributions are de-fuzzified and return a crisp 

number indicating the value for the angle in terms of 

relative degree with the main query and distance as a 

percentage from the maximum distance to border of the 

image frame. 

Each instance from the example files is transformed into a 

data structure in Visuo called an exemplar, and some 

prototype memory is modified (or created if it does not yet 

exist). These prototypes contain a fuzzy distribution of each 

of the examples‟ attribute values for both the distance and 

angle. For instance, the prototype “[hat] above man” 

contains the distribution of values for each “[hat] above 

man” example. The prototypes can thus be thought of as an 

average of all experiences of a given pair of labels. 

With the prototypes created for each pair of labels in the 

Peekaboom database, Visuo has a large trained set of 

distances and angles for pairs of labels that can be used to 

determine placement of elements in SOILIE's imagined 

image. In order to determine the value for specific pair of 

labels, Visuo looks in its database for the specific prototype 

matching the query. Once it has found it, it will transform 

the fuzzy distributions of angle and distance into crisp 

quantitative numbers, which SOILIE uses to place elements 

in the image in relation to the query, which is in the center. 

Following the previous example of the query “sky” and the 

returned elements ['water', 'building', 'cloud', 'mountain'], 

SOILIE would query Visuo with the following input: 

 

[sky] above water 

[sky] above building 

[sky] above cloud 

[sky] above mountain 

 

This would, in turn, return the respective distance and 

angle for these pair of objects. This output takes the 

following form, the first number being the angle in degrees: 

 
#sky 

sky-water -86.6024480504 0.938798453022  

sky-building 71.0785158959 0.879984377514  

sky-cloud 83.6170496771 0.371586153984  

sky-mountain 97.3158893841 0.55739012773  

 

After this has been done for the each included element, 

SOILIE knows what elements will be in the image, and 

where they should appear. This scene description is sent to 

the renderer to generate an image that can be seen on a 

computer screen.  

Lastly, Visuo also has the ability to estimate angles and 

distance of pairs of label on which it has not yet received 

training. When it is asked to get special information on a 

novel pair of labels, Visuo will use the WordNet database 

(Fellbaum, 1998) to determine the meaning of the 

unrecognized words. It uses WordNet‟s semantic similarity 

information to find a known pair that correlates highest with 

the query. For example, if it does not have a prototype for 

“Chevrolet above pug” it might return “car above dog,” for 

which it does have a prototype. 

Once the most correlated pair has been found, Visuo will 

use its attribute distribution in place of the query‟s lack of 

data. This allows the program to return approximate 

information for labels it does not know based on semantic 

comparison with what it does know.  

Renderer 

The last module is tasked with displaying the imagined 

image. It takes as input the elements and their locations on 

the canvas from two previous modules. The main query is 

then placed in the center of the image and each of the other 

items is placed around it according to the angle and distance 

specified. 

To get the necessary pixels for the rendering of the picture, 

this module uses the images from the LabelMe database. 

LabelMe is a “web-based annotation tool that allows easy 

image annotation”. (Russell, Torralba, Murphy, & Freeman, 

2008). This provided an effective tool to collect quantitative 

information on annotated objects in the database. LabelMe 

provides a drawing interface for users to specify the 

boundaries of objects in an image as well as a label. 

LabelMe‟s bounding boxes provide better outlines of 

objects than the point clouds in the Peekaboom database. 

LabelMe also has the advantage of using photographs from 

the Web as opposed to all web images, which include 

cartoons and logos. This allows SOILIE to use real-world 

pictures of objects when rendering output. 



 The LabelMe labels are indexed in a preprocessing stage, 

before SOILIE is first run, where each label is associated 

with images containing the label. An image is chosen at 

random from the list corresponding to the queried label, and 

the outline information is extracted. The corresponding 

image file is then loaded into a PyGame 1.9 instance. In 

order to avoid overly large objects taking too much of the 

visual space, image files of more than 500 pixels wide are 

halved in size. This prevents objects such as skies from 

hiding other objects in the scene or unusually big items such 

as ears from appearing too much out of proportion. A 

polygon is drawn from the vertices corresponding to the 

LabelMe outline, and the positions of the pixels inside the 

polygon are kept as a mask, which is then applied to the 

LabelMe image. The pixels under the mask are finally 

displayed in the rendering window. The location is 

determined by a vector given by Visuo, the initial point of 

the vector is mapped to the center of the picture, and the 

center of the bounding box of the pixels is mapped to the 

terminal point of the vector.  

Evaluation 

The next section will qualitatively examine the strengths 

and weaknesses of the current model through examples 

from its output.  

 

Figure 2: Result of the query „car‟ 

 

SOILIE is capable of generating a wide variety of images. 

The Oracle of Objects‟ use of the coherence matrix as well 

as Visuo's training on a large database and its ability to 

approximate an appropriate value for distance and angle 

through analogy allows SOILIE generates somewhat 

coherent images. This has been supported with quantitative 

evaluation in Somers, Gagne, Astudillo, and Davies (2011). 

Every Figure in this paper depicts images generated by 

SOILIE. Figure 2 shows the resulting rendered image based 

on the query “car”. Given such a query, SOILIE returned 

the following labels [„sky‟, „wheel‟, „road‟]. This is so 

because they are labels that are often seen in the same image 

as a car and thus were highest in the co-occurrence matrix. 

From there, Visuo assumed the car to be in the center and 

returned coherent placement for the other labels. The image 

demonstrates the system‟s ability for coherent placement, as 

the sky was placed above the car and both the road and the 

wheel under it, like any human might expect from such a 

scene. 

Furthermore, the Oracle of Objects returns sets of objects 

with a relatively high coherence. Table 1 shows several 

examples of the Oracle‟s output when given certain queries. 

As one can see, the use of the top-n items in the co-

occurrence matrix permits the creation several coherent of 

sets of item. 

 

Table 1: Sample label output. 

 
Query Returned Labels 

Sky [„water‟, „building‟, 

„cloud‟, „mountain‟] 

Tree [„building‟, „water‟, 

„house‟, „grass‟] 

Table [„woman‟, „people‟, 

„food‟, „chair‟] 

Dog [„grass‟, „ear‟, 

„puppy‟, „man‟] 

Bed ['window', 'woman', 

'sleep', 'room'] 

Mouse [„rat‟, „computer‟, 

„animal‟, „keyboard‟] 

 

It should however also be noted that in its current state, 

SOILIE has very low context sensitivity when the query has 

strongly correlated words from different contexts, such as 

homonyms. One such example is the word “mouse,” which 

can refer to both computer mouse and the animal. The 

engine currently has no way of differentiating these two 

contexts and if two labels are correlated enough, they will 

come out in the image (we address this problem in our lab‟s 

forthcoming paper: Vertolli & Davies, under review). Figure 

3, in which a computer mouse is partially hidden by a 

groundhog and a deer, clearly demonstrates the integration 

of the two contexts of mouse in a single image. Queried 

with the word mouse, the Oracle returns ['rat', 'computer', 

'animal', 'keyboard'], showing no discrimination of the 

mouse as animal and as computer hardware. This is 

problematic as it can create serious incoherence in resulting 

images. 

Furthermore, it has no concept of meronyms. This means 

that the system does not know that a bird has a beak or that 

faces have noses. But because they are strongly correlated in 

the database, it is highly probable to get an image containing 

both a picture of a bird and one of a beak. Figure 2 is an 

example of this. The query „car‟ has returned wheel but one 

can clearly see that the car pixels returned already feature 

wheels, so the additional wheel was unnecessary. Table 1 

also demonstrates this problem as the query dog returned the 

label „ear‟ even though it is not a necessary addition as ears 

are already parts of dogs. Our laboratory‟s future work will 

address this problem as well. Also note that `puppy‟ was 



returned, showing that SOILIE also fails to ignore 

synonyms. 

 

Figure 3: Result of the query „mouse.‟ Note that it appears 

that an image of a groundhog was incorrectly labeled as 

„rat‟ in the LabelMe database. 

 

Another drawback is Visuo‟s current lack of information 

on diverse attributes. Although it currently has a lot of data 

on distances and angles, it knows nothing of other attributes 

such as size or depth. For instance, it can tell that a cap is 

close to a head but in the actual rendering of the scene, there 

is no data on the relative size of the cap and the head, 

possibly creating images with set of objects with poor 

proportions. Figures 1, 2 and 3 all demonstrate SOILIE‟s 

lacking of the size attribute. In figure 2, the wheel is 

significantly bigger than it should be for the size of the car 

and Figure 3 shows a computer that is disproportionately too 

small for the size of the keyboard and the mouse. Using the 

current database for Visuo training, Peekaboom, such 

information would be hard to acquire as it does not contain 

boundary information about its labels or depth information, 

rendering the extraction of relative size quite difficult 

without sophisticated computer vision techniques. 

Figure 2 also demonstrates some of the rendering errors. 

Because the rendering engine uses the center of the object to 

determine placement, it ignores the object‟s boundaries. In 

Figure 2 the road cuts the wheel in half and in Figure 1 by 

the nose overlapping with the mouth. This makes for images 

with inappropriately overlapping objects. 

Another problem that arises in the rendering stage is that 

when the Oracle of Objects returns the label „ear‟ when 

queries with `dog‟. The renderer finds an image of an ear 

and places it on the canvas. Unfortunately, the current 

system has no way to determine whether the picture file it is 

using contains a dog ear or a human ear or, again as in 

Figure 2, if the mouse file contains an image of an animal or 

a computer hardware. 

Figure 4 demonstrates quite eloquently most of the 

current rendering module‟s shortcomings. Although the 

„ear‟ was placed above and to the side of the dog‟s head, it 

overlaps greatly with it because the object‟s boundaries are 

not taken into consideration. It can clearly be seen that the 

engine used a human‟s ear for a dog‟s ear and the lack of 

objective size information made the ear significantly bigger 

than the dog itself. 

 

 
 

Figure 4: Result of the query „dog‟ 

Discussion 

The first implemented model of mental imagery was done 

by Kosslyn and Shwartz (1977). The system used a polar 

coordinate pixel system that successfully modeled some 

psychological findings of mental imagery, including 1) 

taking longer to generate more complex images, boundaries 

of the mind‟s eye, rotation, scaling, and incremental 

increase in detail according to attention shifting. The system 

could work with two images: a chair and a car. This model 

can be included in a range of implemented “array theories” 

that eventuate in pixel placement, some explicitly symbolic 

(e.g., Glasgow & Papadias) and some connectionist (e.g., 

Stucki & Pollack, 1992). These models do not speak to how 

elements are selected for inclusion in the scene, but provides 

a more realistic model of the final stage of imagination. In 

contrast, our approach uses the final image that is output 

primarily for demonstration purposes. Future work might 

incorporate a more realistic model of the visual cortex for 

the rendering stage.  

    Cognitive scientists tend to agree that humans do not 

store bitmap-like (depictive) representations in long-term 

memory, but rather proposition-like (descriptive) encodings 

of scenes (Kosslyn, 1994). Our system uses photos from 

LabelMe to get elements for display in the imagined scene. 

We do not believe that human beings do it this way. 

However, how people generate depictive representations 

from descriptive ones is a mystery. 

     Computer scientists have created programs that design 

and render (Ebert et al., 2003). These systems are not 

designed to be cognitive models. In this field it is typically 

not called “imagination”, but goes by names such as 



procedural generation, synthesis, dynamic generation, 

procedural modeling, procedural synthesis, and visualization.  

     In terms of content, such systems tend to focus on one of 

the following categories: faces and people, plants, terrain, 

planets, interiors, or cities.  What is more interesting about 

these systems are the methods used: *either grammars*, 

explicit knowledge, or fractals.  

    Grammars use explicitly coded rules that describe 

acceptable expressions to determine what gets placed where. 

For example, chairs should appear surrounding a table.     

    Explicit knowledge might use templates or cases to define 

what things should look like. For example, there might be a 

rule that says that all rooms must have doors. As in many AI 

applications, explicit knowledge of this kind tends to be 

brittle, expensive to encode, and generates contradictions as 

the knowledge base grows.  

    Fractal methods, which are primarily used for natural 

systems such as plants or terrains, use mathematical 

descriptions. Fractals are self-similar at different scales. The 

branching of a tree from a trunk resembles the branching of 

smaller branches from the original branch, and so on. Many 

natural phenomena, particularly ones that maximize area in 

a finite space, can be modeled with fractals.  

Conclusion 

SOILIE is able to take a user input of a single word and 

generate a rendered image of a 2D scene depicting the query 

word and several associated images, in more or less the 

correct places. Although the placement of sub-images in the 

final canvas makes sense if you know what it is doing, the 

images are admittedly unlike our internal experiences of 

imagery, and appear rather like surrealistic art pieces. Future 

work should improve the images. 

In particular, the problems faced are 1) incoherent label 

choice (particularly with homonyms), 2) the system‟s 

misunderstanding of part-whole relationships (meronyms), 3) 

a misunderstanding of kind with respect to parts and wholes 

(a dog‟s ear versus a human ear) and 4) lack of information 

about size. Future work will address these problems, as well 

as improve the nature of the output using pixel interpolation 

to fill in blank spaces (Hays & Efros, 2007; Feiner, 1985), 

to create a more realistic neural model of the rendering. 
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