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Abstract

Understanding spatial information between the objects visible
in a scene is crucial to tasks such as describing relevant fea-
tures of the scene, navigating it based on a description of its
features, and for creating novel imagined scenes based on lin-
guistic input. We present a model of spatial relation appre-
hension able to map geometric information from 3D scenes
containing multiple objects to English prepositions and verbs
in terms of direction and distance, as well as topological rela-
tions. We created an implementation of the model to evaluate
its effectiveness.
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Introduction
When people perceive scenes, they understand spatial rela-
tions between objects. For example, when viewing a dining
room, someone might perceive that the table is in the center
of several chairs. Several competing models of spatial rela-
tion apprehension exist, and are supported in different ways
and under different situations(Gorniak & Deb, 2004; Muk-
erjee, Gupta, Nautiyal, Singh, & Mighra, 2000; Lockwood,
Forbus, & Usher, 2005; Regier & Carlson, 2001). A common
situation that lacks an applicable model is a 3D scene com-
posed of many objects (Kojima & Kusumi, 2007). The goal
of this paper is to present a model able to describe a scene in
a cognitively plausible way through the use of spatial terms
related to distance, direction, and topological relations. The
spatial relations supported by our model are deictic, where a
target object is related to a reference object from the point of
view of that reference object. An example of a possible scene
description is the following: The desk is in front of the couch.
The desk is far from the couch. The pillow is to the right of
the couch and close to it. The lamp is above the pillow.

To represent the locations of relevant objects in a scene, the
model needs to estimate how they are related to each other in
a spatial manner. This step is inspired by the theory of spatial
relation apprehension developed by Logan and Sadler (1996),
who performed experiments to determine how people use En-
glish sentences to describe the relationship between two ob-
jects in a 2D scene. They suggested that people have a num-
ber of spatial templates corresponding to propositions about
spatial properties, such as in front of. The current research
was also inspired by an implemented model of 2D spatial re-
lation detection by (Smith et al., 2010).

A spatial template is defined as a fuzzy membership func-
tion that returns a value indicating the applicability of the
template for a pair of objects, behaving rather like a recep-
tive field. For example, if a person is to determine whether
a located object is in front of a reference object, the person
would try to apply the in front of template in the scene being
studied. Depending on how well the two objects fit the tem-
plate, the person would then decide the degree to which the
proposition indeed applies to the scene.

Our model advances from their work through the descrip-
tion of algorithms corresponding to the spatial templates dis-
cussed in Logan’s study, and creating 3D versions of the im-
plementations of Smith et al. Developing our model involved
defining those spatial templates and the processes that allow
the model to apply them in scenes. In our implementation,
these algorithms are applied to objects in human-designed
3D environments created with computer-aided design (CAD)
software, in the X3D format.

The next sections describe how the model is able to rep-
resent eleven spatial relations: in front of, behind, right of,
left of, above, below, contains, contained by, protrudes from,
close to, far from. Our model also accounts for the interfer-
ence effect found in scenes that present a large number of
objects (Kojima & Kusumi, 2006).

Spatial relation apprehension
Computing the spatial relations in a given scene is done ac-
cording to the following steps: the assessment of the refer-
ence object’s location in the scene, the selection and align-
ment of a reference frame based on the reference object, and
the application of a spatial template on the located object
(Carlson-Radvansky & Logan, 1997).

For the purpose of our model, we assume that the absolute
locations, orientations, and sizes of objects in the scene are
given as input. As for the reference frame manipulations, the
model uses an environment-centered reference frame, where
the coordinate axes are oriented according to longest dimen-
sion of the scene, i.e., the horizontal axis, or x axis, points
toward the length of the scene and the vertical axis, or y axis,
points against gravity. Since the model focuses on deictic re-
lations, the reference frame’s point of origin corresponds to
the location of the reference object. The spatial templates are
then applied to the pair of objects according to the reference
frame.

To produce descriptions from a pair of objects, all known
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spatial templates are applied iteratively to the pair and the
ones with a high degree of membership are kept as good de-
scriptions of the relations between those objects. This pro-
cedure is similar to the one described by Logan and Sadler
(1996), in the case where viewers are asked to judge relations
between objects and no specific relation is mentioned, e.g.
where is the ceiling with respect to the floor?

The spatial relations are divided into three categories, de-
fined by the geometrical parameters required for their appre-
hension. Directional relations depend on the orientation of
the reference frame and are assessed for each axis, while dis-
tance relations are independent of the reference frame’s orien-
tation. As for the topological relations, which concerns con-
tainment, the result depends on the detail of the geometrical
shape, which can be approximated through the use of bound-
ing boxes.

Topological relations
Topological relations are considered binary (i.e., non-fuzzy)
for the purpose of our model, such that a relation will be ei-
ther be applicable or not to a pair of objects. For each pair of
objects there is only one applicable relation among all topo-
logical relations. Three spatial templates are supported by our
model: contains, contained by, protrudes from.

Two objects are said to intersect if, along any axis, the
boundaries of the objects cross each other. The exact calcula-
tion depends on the representation of the geometrical shape,
and will be discussed in the Method section. The acceptabil-
ity rating of all topological relations becomes 0 if no intersec-
tion is found between the two objects.

The located object is said to contain the reference object
when the boundaries of the located object extend farther than
the reference object’s boundaries in all dimensions. The con-
tained by relation applies to the reverse case, where the ref-
erence object’s boundaries have a larger volume. As soon
as one part of the located object extends outside the reference
object’s boundaries, the located object is said to be protruding
from the reference object. The relation is symmetrical, such
that the reference objects is also considered to be protruding
from the located object.

Distance relations
The two spatial templates close to and far from are depen-
dent on the distance between the two objects and the size of
the scene in which they are found. The following equations
describe the computation involved:

rating = 1− 1
1+30e−7·distance (1)

rating =
1

1+30e−7·distance (2)

where (1) is used for the close to template and (2) is used
for the far from template. The distance value is calculated
from the Euclidean distance between the two objects divided
by the estimated maximum distance within the constraints of
the scene, reflecting the tendency to perceive two things as

being closer if they are in a smaller space. The equations
were built to model the empirical findings described by Logan
and Sadler (1996) on a relative domain, where a distance de-
scribed as minimally close to is equal to 0 and the most close
to is equal to 1.
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Figure 1: Surface plot of the acceptability ratings for all pos-
sible locations around a reference object for the spatial tem-
plate far from, as defined in (2), restricted to a 2D plane

Directional relations
The model includes the following six spatial directional rela-
tions: in front of, behind, right of, left of, above, below. Each
of these relations are associated with a acceptability rating
computed by the following equation:

rating =
located j − re f erence j√
3
∑

i=1
(locatedi − re f erencei)2

(3)

where located and reference refers to coordinates of the
center of the located object and the reference object on a sin-
gle axis. The Euclidean distance between the two objects is
calculated and divides the distance between the objects along
the corresponding axis: x for left of and right of, y for above
and below, and z for in front of and behind.

The function was designed to approximate empirical find-
ings from Logan and Sadler (1996) and Hayward and Tarr
(1995). However, these studies involved experiments where
only the two objects of interest were present in the scenes
shown to participants, and interference effects were reported
by Kojima and Kusumi (2006) for scenes presenting multiple
objects. These interference effects are accounted for by an
operation that will modify the acceptability of relations dur-
ing a later phase of the computation.

In addition, a boundary constraint regarding the size of the
objects can negate a directional relation. If the boundaries of
one of the two objects are large enough on a given axis, such
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Figure 2: Surface plot of the acceptability ratings for all pos-
sible locations around a reference object for the spatial tem-
plate right of, as defined in (3), restricted to a 2D plane

that the other object is within those boundaries, the relation
corresponding to that axis is deemed irrelevant.

Interference effects
In a scene populated with many objects, the spatial templates
previously described produce a high number of candidate ob-
jects for a given type of relation and reference object. Accord-
ing to Kojima and Kusumi (2006), there is an interference ef-
fect dependant on the proximity between those objects that
change their acceptability ratings. This provides for the over-
all model an apprehension of spatial relations that is depen-
dent on the context of the scene rather than depending only
on the pairs of objects themselves.

For a given pair of objects, the presence of other objects
will alter the calculation of spatial relations based on their
proximity to the reference object. The presence of a closer
object, might, in the case that it also satisfies the given spa-
tial relation, decrease the acceptability of objects that are far
from itself and increase slightly the acceptability of the local
area. An example of this phenomenon can be seen in Figure
3 between the cube, the sphere, and the cone. The relation
the cone is to the left of the cube has a lower acceptability
rating than the relation the sphere is the left of the cube but it
is deemed more relevant due to the interference of the prox-
imity of the cone to the cube. A consequence of this effect is
the reduction of the large set of candidate objects to a small
set of more relevant ones, where the best matches for a given
relation will supplant the others.

To model this effect for a given type of relation, such as in
front of, the following steps are done once the acceptability
ratings have been calculated for the relation between a given
reference object and the other objects in the scene. For every
object, the ratings given by the directional relation and dis-
tance relation are first combined into a product. The object

with the strongest combined rating is considered a tempo-
rary reference object, and the spatial template for distance is
then applied to the other objects, where the farthest object de-
termines the range used for the relative domain calculations.
This operation determines the proximity between the candi-
date objects from the strongest candidate, and all objects that
get a rating above 0.90 are considered close enough such that
their relation with the initial reference object is relevant. This
last step models the effect that an object that previously was
considered less acceptable for a given spatial relation might
become more acceptable in a situation where it appears to be
part of a cluster with a better candidate object for the spatial
relation. An example of what might be considered a cluster is
found in Figure 4, where the large cube and the cone are near
each other. If we remove the cylinder and the small cube,
both the large cube and the cone would be considered to the
left of the sphere, which would not happen if the cone was
only decreasing the acceptability of other objects, due to its
greater proximity to the sphere.

Figure 3: Front view of a sample scene containing five ob-
jects, including a large plane. In our model, the size of the
plane inhibits the relevance of specific spatial relations. In-
terference comes into play when determining what is to the
right of the cone, for example. The cylinder’s location would
be considered acceptable in an otherwise empty scene, but
the presence of the cube, a much better candidate, makes the
relation less relevant. A top view of the same scene is shown
in Figure 5.

This interference operation is also applied to find the most
relevant distance relations, and the procedure is identical with
the exception of the use of a combined rating, as the accept-
ability ratings are directly used to find the closest or farthest
object.

Method
We implemented our model as a Python 2.7 software pack-
age, available online1, that parses XML files written accord-
ing to the X3D standard. X3D is an ISO standard for rep-
resenting 3D scenes, well known for its Web integration ca-

1http://github.com/science-of-imagination/mist



Figure 4: Front view of a sample scene presenting five ob-
jects in a row. The existence of objects between the reference
object and the located object can make their relation irrele-
vant, which is the case for the sphere being to the right of the
large cube. The row is oriented along the x axis to test the
interference computation.

pabilities and for its compatibility with open source software
(Hetherington, Farrimond, & Presland, 2006).

Our software takes an X3D file as input and identifies the
objects described as either X3D shapes or sets of vertices. A
shape, as defined in X3D, is a primitive object, such as a cone
or a sphere, while sets of vertices are used to build complex
meshes out of polygons described individually, a single set of
vertices being associated with a polygon. The software then
constructs an axis-aligned minimum bounding box for each
object in the scene. A bounding box is also computed for the
whole scene from the set of all objects. Bounding boxes are
then used for all calculations.

While directional and distance templates can be directly
implemented, the apprehension of intersections, necessary for
topological relations, require computations specific to the ge-
ometrical representation of the objects, defined in the follow-
ing equation:

rating =

1, if
locatedi + re f erencei

2
> distance

0, if otherwise
(4)

where located and reference are the dimensions of the cor-
responding bounding boxes along a specific axis and distance
is the Euclidean distance between the center of the bounding
boxes. The computation is done for each of the three axes,
confirming an intersection as soon as a rating of 1 is returned.

For input we produced a set of hand-made files that rep-
resent scenes with geometrical shapes in the X3D format to
qualitatively evaluate the effectiveness of the model. The
files can be imported in Blender 2.5, an open source 3D con-
tent creation software, for the purpose of visualization. The
scenes were created to expose the model to cases that would
demonstrate its ability to perceive relevance among the set of
all possible relations, which would test the effectiveness of
both the interference computation and spatial templates.

Results and Discussion
A subset of the spatial relations found in the scene displayed
in Figure 3 is shown in Table 1, as well as the acceptabil-

ity ratings associated with them. The scale used for the ac-
ceptability ratings ranges from 0 to 1, where 1 represents a
perfect degree of membership. The subset presented here is
restricted to the relations found for the cube and the sphere.
Table 2 presents a number of spatial relations found in the
scene illustrated in Figure 4, the subset being restricted to the
relations found for the cone and the cylinder.

Table 1: Spatial relations for the scene shown in Figure 3 and
the associated acceptability ratings

Spatial relation Rating
The cube is to the right of the cone 0.94
The cube is below the cylinder 0.87
The sphere is to the left of the cone 0.64
The sphere is above the plane 1.00
The sphere is below the cylinder 0.60
The sphere is behind the cone 0.60
The sphere is close to the plane 0.85
The sphere is far from the cylinder 0.87
The sphere is far from the cube 0.82

Figure 4 shows a situation where other models, the At-
tentional Vector Sum model and the Proximal and Center of
Mass-Bounding Box model (Regier & Carlson, 2001), would,
were the scene projected to a 2D plane along the horizontal
axis, qualify the statement the cone is to the left of the sphere
as a good spatial relation. The models ignore the presence of
other objects to compute a spatial relation’s acceptability rat-
ing, providing identical results for pairs of objects whether
they occur in a crowded scene or alone. However, as de-
scribed in (Kojima & Kusumi, 2006), the acceptability of the
sphere as a located object that corresponds to is left of should
be reduced by the presence of distractor objects, such as the
cylinder and the small cube. Our model avoids such a pitfall
thanks to the interference computation, and only returns that
the cone is to the left of the cylinder. This shows that the
model is sensible to all objects in the scene, producing results
that are context-dependent.

Table 2: Spatial relations for the scene shown in Figure 4 and
the associated acceptability ratings

Spatial relation Rating
The cone is to the right of the large cube 0.98
The cone is to the left of the cylinder 0.94
The cone is far from the sphere 0.95
The cone is close to the large cube 0.81
The cylinder is to the left of the small cube 0.67
The cylinder is above the small cube 0.67
The cylinder is far from the large cube 0.93
The cylinder is far from the sphere 0.85

A situation in which the model developed by Smith et



al. (2010) produces irrelevant or incorrect descriptions is the
case of large objects appearing in a scene, such as the one
present in Figure 3 and 5. The scene would lead this model
to assert that the cone, the lowermost object in Figure 5, is in
front of the large plane. This is the case because the z value
of the centroid of the objects are compared in this model,
without accounting the boundaries of the objects. Therefore,
since the center of the cone is more forward than the center of
the plane, the cone would be considered to be in front of the
plane. To improve upon this model and in an effort to prune
away the weakest spatial relations, our model disqualifies the
sphere and the cone for some directional relations, based on
the boundaries of the objects. In Figure 3, for example, the
spatial relation above is the only one considered relevant by
our model, which is analogous to the intuition that people
rarely locate themselves in a room through the location of the
floor’s geometric center.

Figure 5: Top view of the sample scene shown in Figure 3,
illustrating the position of the objects along the z axis. The
cone is located at the bottom of the figure, near the edge of
the large plane.

Applications
Our model describes scenes in a way that is similar and rele-
vant to the human cognition of spatial relations. Representing
space in that manner can be applied in a number of situations,
as described below.

One of these applications can be found in imagination re-
search, where a set of instructions are given to a drawing sys-
tem and a visual scene is produced. Suppose you are reading a
book and room is described with only the following sentence:
In the living room, a couch was close to the fireplace, with a
long table to its left. This will still give you, as a reader imag-
ining the scene, a complete picture of a room, even though
many other elements, including absolute distances, are not
mentioned. A typical scene description obtained through the
model would offer plausible spatial relations to accompany

the elements in this sentence, as well as defining the men-
tioned spatial relations.

WordsEye is such a system, and is able to parse a para-
graph to create a scene with its database of 3D models (Coyne
& Sproat, 2001). However, it uses, for each object in its
database, hand-coded ranges of spatial coordinates associ-
ated with all possible spatial terms parsed by WordsEye. The
model could therefore expand WordsEye’s capabilities, pro-
viding a way to automatically produce plausible ranges of
spatial coordinates for any 3D object added to its database.
The model will also dynamically change those ranges of spa-
tial coordinates based on the scene in which the object is lo-
cated, according to its context-sensitive capabilities offered
by the interference computations and the frame-dependent
spatial templates.

Designers of intelligent agents in tactical simulations, as
those used in firefighting training systems, could benefit from
realistic and automatic spatial understanding, our model al-
lowing them, for example, to use instructions such as walk in
front of the table directly without needing them first translated
into absolute spatial coordinates. Without a model able to
discern relevant relations, the designers would have to spec-
ify the location of the region that is considered in front of
the table to the agent, forcing the designers to attribute a set
of spatial coordinates for that location. However, protocols
and human communications are encoded in qualitative terms,
such as “in front of,” and not in terms coordinates.

Extending the parsing abilities of our software implemen-
tation would also offers the possibility of taking in any num-
ber of virtual scenes and assessing their spatial properties, un-
covering patterns useful to designers, especially in the case of
environments created by a multitude of people such as ones
found in public databases of assets. The production of scenes
based on those patterns would also offer those designers a
way to guarantee that their content is similar to what a human
would expect it to be like. A benefit of this approach is that
it would inform virtual and real world designers alike, in the
case of reconstructed scenes, on features that make an envi-
ronment desirable to users, such as the ease of navigation.

Conclusion
We presented a model of spatial relation apprehension and
its software implementation that is able to parse scenes in
three dimensions and return descriptions of the scene using
spatial terms related to distance, direction, and containment.
Our model was developed to reproduce how human viewers
would perform when they are asked to describe a scene com-
posed of abstract objects. To improve the relevance of the
descriptions, as to reduce the number of statements returned
by the system, cognitively plausible spatial templates and in-
terference effects were modeled. The interference effects, in
particular, produce results that are context-dependent, as the
presence of other objects in the scene modify the acceptability
ratings of the spatial relations. Future work includes the eval-
uation of the model with experiments involving participants,



the integration of the model to simulations where agents per-
form tasks involving spatial cognition, and the development
of design-oriented capabilities.

Figure 6: Another scene, containing five objects, tested with
our model. A front view is shown to the left and a top view is
shown to the left. The locations were randomly generated.

Table 3: Spatial relations output by our model for the scene
pictured above and the associated acceptability ratings

Spatial relation Rating
The plane is to the right of the cube 0.69
The plane is above the cylinder 0.77
The plane is behind the cone 0.91
The plane is far from the cylinder 0.80
The plane is far from the sphere 0.87
The cone is to the right of the cube 0.59
The cone is above the cube 0.71
The cone is behind the sphere 0.74
The cone is far from the cylinder 0.87
The cylinder is below the cube 0.89
The cylinder is in front of the plane 0.91
The cylinder is behind the sphere 0.52
The cube is in front of the plane 0.69
The cube is behind the sphere 0.76
The cube is far from the sphere 0.87
The sphere is to the right of the cube 0.65
The sphere is above the cylinder 0.70
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