
High-level representation of 3D models of buildings
Sebastien Ouellet (sebouel@gmail.com)

Sterling Somers (sterling@sterlingsomers.com)

Jim Davies (jim@jimdavies.org)

Institute of Cognitive Science, Carleton University
1125 Colonel By Drive, Ottawa, Ontario, K1S 5B6 Canada

Abstract

The goal of the current research was to design and imple-
ment a system able to extract high-level representations of 3D
building models for the purpose of developing cognitive mod-
els. We present an intermediate representation scheme that
supports modeling at different levels of detail. A cognitive
model could easily use our representation scheme to perceive
and navigate a 3D building. The overall goal of the project
was to develop an implementation-independent representation
scheme, sufficient to support high-level symbolic cognitive
models. Our node-based representation supports high-level vi-
sual perception (which can be used in a spatial representation
internal to the agent) or a complete semantically labelled topo-
logical map. Our representation scheme identifies structural
features of the 3D building environments: “floor”, “ceiling”,
“wall”, “door”, and “corner”, which are useful for agents pro-
grammed in symbolic cognitive architectures and navigating
simulated environments. Our evaluation shows that this rep-
resentation is sufficient for agents to do simple navigation in
virtual environments.

Keywords: 3D models; Spatial features detection; Tactical
protocols; Spatial reasoning; Agents

Introduction
Symbolic cognitive architectures such as ACT-R (Anderson
& Lebiere, 1998) are used to create models of computerized
agents: psychologically realistic computer programs whose
internal processes and external behaviours (usually within
a virtual environment) are constrained by the architecture
within which they are created. Often, to validate the models,
and the theories they represent, the performance of the mod-
els are compared to the performance of human experimental
participants doing the same task. In ACT-R, for example,
models are often compared with human task-performance
measures, reaction time data, and learning rates. While many
models are produced for the purpose of presenting and vali-
dating cognitive theories, there can often be a secondary use:
using the architecture to create realistic agents for use in sim-
ulation training tools.

A good example of this secondary use of cognitive ar-
chitectures came out of the Office of Naval Researchs Vir-
tual Training and Environments (VIRTE) program. Models
of Military Operations in Urban Terrain (MOUT) and Close
Quarters Combat (CQC) were developed for different cogni-
tive architectures (Wray, Laird, Nuxoll, Stokes, & Kerfoot,
2005; Best & Lebiere, 2003). Soar MOUTbots (Wray et al.,
2005) are an extension of Soar Quakebots (Laird, 2001), and
are developed for military training simulations. MOUTbots

navigate their environments with the use of topological maps
built up over time with the use of node-based map markers.
The ACT-R MOUT model (Best & Lebiere, 2003) is based
on an extended version of ACT-R 5.0 for MOUT operations.
In order to navigate, ACT-R MOUT agents use both allocen-
tric and egocentric spatial representations to form a cogni-
tive map. The cognitive map uses a node-like representation
scheme to encode the relationship between map areas.

An important commonality between the ACT-R MOUT
model and the Soar MOUTbots is the simulation environ-
ment. Both the ACT-R MOUT model and the Soar MOUT-
bots are written to interface with Unreal Tournament, a com-
bat simulation game. Much of the aim for the ACT-R MOUT
model, Soar MOUTbots, and the related cognitive model
SNAP (which also uses Unreal Tournament as a simulation
environment) (Ting & Zhou, 2009) is to improve the perfor-
mance of bots in the game. The advantage of using a sim-
ulation environment like Unreal Tournament is that it has
a rich 3D environment, a sophisticated physics engine, and
tools which allow virtual agents to interact with the environ-
ment and exploit the features of the physics engine (e.g., the
firing of a weapon). The advantages gained from using a
pre-built engine, especially in using the built-in environment
tools, however, limit the degree to which the interface soft-
ware can be re-used. Different modeling needs may require
different features from a simulation environment, especially
as environments get more complex in the future.

One of the main cognitive modeling hurdles alleviated by
using simulation environments like Unreal Tournament is vi-
sual perception. Artificial visual perception is a notoriously
difficult problem. Importantly, it is not necessary at a cer-
tain level of abstraction to model all aspects of the cognitive
apparatus. In ACT-R 6.0, for example, visual perception is
largely circumvented with the use of visual icons (Fleetwood
& Byrne, 2003). Visual icons encode location and seman-
tics of information usually presented on a computer screen.
While the ACT-R vision system does not perceive the envi-
ronment per se, it is able to make reaction-time predictions
based on the properties of the icons (e.g., where they are lo-
cated). What is important in cognitive models that use vi-
sion systems like these is that they are sufficient for the task
being modeled. The visual icon and similar vision modules
in ACT-R have been shown to be sufficient for many tasks.
Because of the complexity of the simulation environment in

JimDavies
Typewritten Text
Ouellet, S., Somers, S., & Davies, J. (2013). High-level representation of 3D models of buildings. In R. West & T. Stewart (Eds.), Proceedings of the 12th International Conference on Cognitive Modeling, Ottawa: Carleton University (unnumbered six page online proceedings)



the MOUT/CQC models discussed above, in order to suc-
cessfully model agents that operate in those environments, a
sufficiently complex vision system needs to be developed.

Both the Soar MOUTbots and the ACT-R MOUT model
have unique solutions to providing sufficient perceptual infor-
mation for their agents. MOUTbots, for example, make use of
an annotated map, which includes nodes to represent bound-
aries of rooms, and nodes which link rooms such as doors
and windows. The MOUTbots can then use this intermedi-
ate representation to develop a topological map which can be
used to perform actions within the 3D space. The ACT-R
MOUT model uses an automated mapping agent to pre-map
the location of walls, corners, rooms, and room openings in
the environment using the environment tools in Unreal Tour-
nament. In both of these cases, virtual agents use these inter-
mediate representations to perceive their environments. The
successful implementation of these models suggest that their
perception solutions were sufficient for the task. As discussed
in (Best & Lebiere, 2003), however, these solutions are both
implementation-dependant in that they rely on the specific
tools or pre-processed maps in Unreal Tournament.

The problem that this paper deals with is that of detecting
structural elements of virtual architecture in 3D environments
more generally. Specifically, the detection of floors, ceilings,
walls, doors, and corners. 3D environments are commonly
presented in scene graphs, which contain geometric repre-
sentations, which are rendered by the video card to produce
graphics. While different simulation engines can use differ-
ent 3D environments, at a low-level, the geometric represen-
tations are often composed of collection of triangles. The aim
of our work is to process 3D scene graphs to provide an inter-
mediate representation that can be easily used as perception
by virtual agents implemented as cognitive models (hereafter
“agents.”)

The intermediate representation acts as the agents’ direct
environment and should be rich enough to allow the agents
to act within it. Our intermediate representation is analo-
gous to both the Soar MOUTbot and ACT-R MOUT model
solutions in that it uses nodes to represent the environment.
These nodes carry semantic information about the structure of
the environment, indicating features: floors, ceilings, walls,
doors, and corners. Our hypothesis is that the intermediate-
level spatial representation created by our detectors is suffi-
cient for agents to do simple navigation in a virtual environ-
ment. We tested this with two symbolic-level agent models,
which use the representation to navigate to doorways. Al-
though these agents are not implemented in a cognitive archi-
tecture, our specific aim is to test whether the representation
is rich enough to support this high-level navigation behaviour.

Theory
Our software employs a number of detectors in order to con-
vert the geometric vector representation in the 3D files to
the high level representations in our representation scheme.
This section provides a high-level overview of the software,

describing the detectors we use. Since these detectors are
used to create our intermediate representation which, in turn,
is meant to be sufficient for high level models, it is impor-
tant that we detect an appropriate set of structural elements.
As already alluded to the structural elements detected by our
software are: floors, ceilings, walls, doors, and corners. We
first describe 3D scene graphs, followed by our representation
scheme. We then describe how the detectors work to convert
the 3D scene graphs into our representation scheme.

3D Scene Graph Files

3D scene graph files are hierarchically organized data struc-
tures used for displaying 3D graphics. The hierarchical struc-
ture of scene graph files increases efficiency of the display
process (Wang & Qian, 2010). Leaf nodes are fairly simi-
lar across different 3D formats in that they contain graphical
matrices which represent the visible surfaces as comprised by
the vectors in the matrix.

Importantly for the present work, the organization of the hi-
erarchy is not standard across all 3D file formats. In fact, it is
possible, within a single file format, for there to be differences
in how low-level nodes are grouped (as was the case in this
project). The challenge was to process and group geometric
vectors into high-level structures which can be semantically
tagged as features of a typical building: floors, ceilings, walls,
doors, and corners.

Representation Scheme

The representation scheme we present partitions the environ-
ment into topologically linked spatial units. Each spatial unit
represents a volume of space, and its properties represent the
properties of the original 3D environment (see Figure 1). The
precision of spatial units can be set at run-time, though our
default setting is such that each node is approximately the
width of an agent in the environment. That way, an agent can
occupy a single node in the representation scheme. Nodes
can represent empty space, structural features like walls, and
means of passage, such as doorways. These structural fea-
tures of architectural spaces are important, for example, in
military simulation like CQC room-clearing protocols.

Figure 1 presents a visualization of our representation
scheme. The symbols indicate the location of of spatial units.
A map is produced for each floor of the scene which helps us
confirm that our detectors (described below) capture the fea-
tures present in the 3D scene graph. We use different coloured
symbols to delimit different spaces for a given floor, indi-
cating walls for each space, while the actual symbols (cir-
cles and lozenges) are determined by the labels associated
with the spatial units. In Figure 1, labels distinguish corners
based on whether they are concave (slim lozenges) or convex
(regularly-shaped lozenges). To help us further verify that
our detectors captured the appropriate features, our software
can also output topological maps (Figure 2) and 3D spatial
representation (Figure 3).



Figure 1: 2D visualization of the spatial units. Three large
rooms were found, with two small spaces represented in red
and green. Those two spaces are a staircase, which is a type
of space that is not currently differentiated by our software.

Detectors
At a high level, transforming 3D scene graph files into our
intermediate spatial representation is straightforward. Our
software uses the OpenSceneGraph C++ library1 which we
chose because of its support for a wide-range of file formats.
As mentioned above, the hierarchy is ignored because it was
found to be inconsistent across different files and much of our
aim was to make a general-purpose tool.

The file format we used in this project was OpenFlight, and
the 3D files we used were acquired from our research part-
ners at CAE Professional Services. The two main files we
used for testing were a simple 3D house and a large, multi-
building complex. While the multi-building complex made
good use of the hierarchical structure of the OpenFlight for-
mat, the simple 3D house had oddly grouped vectors (for ex-
ample, a portion of one wall was grouped with a wall on the
opposite side of the house).

The first part of the process involved splitting up each sur-
face in the scene graph into triangular faces. Each new tri-
angular face is a container for the three vectors that define it,
the plane equation of each face, as well as their normal vec-
tors. This process assures that the initial stages of processing
is the same for most files, by processing at a level common
to most 3D files (the level of vectors). While this process in-
creases the computational complexity of our software, it is an
essential processes given possible grouping issues described
above.

Because 3D files are often inaccurate at some degree of
granularity, our library also makes use of an adjustable degree
of accuracy. The number of significant decimals can be set to

1freely available at www.openscenegraph.org

Figure 2: Blueprint-like layout of the simple house (top) and
a portion of the multi-building complex (bottom).

the appropriate level for any given scene graph. To avoid data
loss, our library does not cut off data points at specified dec-
imals. Instead, the library rounds both coordinates and plane
equations during any comparison made during run-time. This
is useful, for example, when comparing the planes of two tri-
angle faces. While visually two triangle faces might appear
to be on the same plane, in the geometric representation they
might, at a fine level of precision, exist on different planes.
With the appropriate degree of accuracy set, our library would
be able to conclude that the triangular planes in this example
exist on the same plane and are, visually, parts of the same
wall. This is ideal as our system is meant to represent what
an agent experiences in their environment.

The next part of the process involves sorting the triangles
according to their plane equation (to the set degree of accu-
racy).The sorting is done in reverse, as it is most likely the
case that each new triangle is part of the most recently cre-
ated plane. This search is exhaustive across the planes as we



Figure 3: 3D representation of the spatial units. Three floors
are shown, the middle one being the floor represented in Fig-
ures 1 and 2.

cannot be sure that a new triangle does not belong to a pre-
viously made plane (this alleviates the odd grouping problem
mentioned above). If there is no matching plane, a new plane
is created.

Finally, faces are created from each plane. Since each face
is a collection of connected triangles, the software checks
to see if each triangle in the face is either directly or dis-
tantly connected to every other triangle in the face. Planes
with disconnected sets of triangles represent surfaces that ex-
ist on the same plane but are detached, as in, for example, two
unattached wall segments.

Since the specific aim of our project was to represent struc-
tural features of an architectural environment, we used a min-
imum surface area to filter by size. Large terrain surfaces
were also filtered our using a maximum surface area thresh-
old. Areas of the faces are calculated by summing the area
of the triangles that make them up. The remaining larger sur-
faces are candidate surfaces for structural features like walls,
doors, floors, and ceilings. To further expedite calculations,
we calculate a bounding box for each surface. To produce
the bounding boxes, we iterate through all surfaces, finding
the maximums and minimums of the coordinates, and calcu-
late an axis-aligned minimum bounding box for each of the
surfaces.

Floors and Ceilings In order to detect floors and ceilings
of the 3D structure, we filter the list for surfaces in a hori-
zontal orientation. The software then calculates the position
of the horizontal faces relative to the boundaries of the entire
scene graph. By calculating the relative position we are able
to produce a candidate list of faces that represent either floors,
ceilings, as well as the roof. A roof, for example, would have
a high relative z-axis attribute. Once we determine one floor,
we iteratively label all the floors and ceilings according to
their z-axis attribute (above a floor is a ceiling, above that
another floor, until a roof is reached).

Walls and Doors In order to detect walls and doors, we
first gather vertically oriented surfaces. Importantly, for these
detectors to work, the floors and ceilings have to already be

detected. One assumption we make is that all walls expand
from floor to ceiling and that doors do not, as they are embed-
ded into walls. Door detection involves detecting vertically
oriented surfaces that have a header above them, i.e. a space
between the top of the surface and the ceiling.

Corners Corners are detected post-surface-processing. We
use the spatial units to detect both convex and concave cor-
ners. When a spatial unit has three ’empty space’ neighbours
(units which represent empty space), that unit represents a
convex corner. When a unit has seven empty space neigh-
bours, that corner is a concave corner (This is discussed in
more detail below).

Evaluation
We implemented two forms of evaluation. In the first, visual-
izations of the 3D scene graph were created and were qualita-
tively compared to the 3D scene graphs to compare structural
elements. A second form of evaluation involved the use of a
simulated agent to test our representation scheme in terms of
its usefulness in high-level cognitive modeling.

Visualizations
At a high level, the process of conversion in our software can
be seen as consisting of two steps. The first step is to sort
the vectors into surfaces, and to provide semantic labels. At
this point only floors, ceilings, walls, and doors are identified.
The second step of the process is to convert that into the final
representation scheme, for which a visualization is presented
in Figure 2. We use the visualizations to qualitatively assess
whether the structural details of the 3D scene graph are cap-
tured in the intermediate representation. The creation of the
three visualizations (Figures 1, 2, and 3) are briefly described
below.

Starting at a point slightly above the floor, the software per-
forms a sweep of one entire floor, creating a new instance of a
spatial unit in the surrounding directions: forward, backward,
left, and right. Each space has a location that corresponds di-
rectly to a location in the original scene graph. Each point in
space is determined to either be empty or intersecting with a
face from the original scene graph. That is, the software de-
termines which points represent walls or simply empty space
in a room based on collisions with the geometry of the sur-
faces previously analysed (from the first phase of the conver-
sion).

Once all spatial units are determined for a given room,
which happens when no unit can expand farther in any di-
rection, the software inspects the neighbours of each unit and
tags them depending on the number of units that surround
them.

Spatial units are tagged as open space when eight neigh-
bours are found, representing the possibility to move in all
directions if an agent stands in that location. They are tagged
as walls when six neighbors are found, indicating a boundary
in one direction. Finally, spatial units are tagged as convex
corners when three neighbors are found or as concave cor-



ners when seven neighbors are found.
The map in Figure 1 is created by drawing symbols to rep-

resent each spatial unit of a given floor. Critically, this visu-
alization helps us identify concave and convex corners. The
maps in Figure 2 are constructed by going through the faces
associated with a given floor and drawing lines between the
vertices making up those faces. The precision with which the
faces are drawn can be set high enough to be able to distin-
guish many small individual components, with no associated
cost in terms of analysis of the faces. Any filled sections of
the map represent angled surfaces, such as the shaded blue
rectangles in Figure 2 (top) that show the sloping ceiling of
the stairs.

Figure 3 shows a 3D version of our representation scheme,
rendered in OpenSceneGraph. Every different space is made
up of triangles linking the spatial units shown in Figure 2,
displayed at the appropriate height.

These 3 visualizations were used to compare the structural
elements in the 3D scene graph to the structural elements in
our intermediate representation. We found that all structural
elements (floors, ceilings, walls, doors, and corners) were
properly identified and represented. Importantly, this corre-
sponded to what was visible in the 3D environment, correct-
ing for any hierarchical organization errors (such as the case
of a wall segment being grouped with a wall in a different
location).

Simulation
We present two sample simulations to test the sufficiency of
our spatial representation scheme. Using one of the main 3D
models we worked with during development, a simple house,
we developed an agent capable of 1) navigating to all the
doors on a floor of the house and 2) navigating to the cor-
ners. Our choice of simulation is relevant given our project
goal. Navigating to the doors shows the relevance of apply-
ing symbols to the elements in a scene graph for use with
a symbolic cognitive architecture such as ACT-R. Secondly,
navigating to the corners is an example of how to use our rep-
resentation scheme to reason and make judgements about the
space.

Since our simulation is not based in a cognitive architec-
ture, there is no variance in performance from trial to trial. We
therefore evaluate our simulation qualitatively in a pass/fail
manner.

In case 1), we instruct the agent to walk to every door on
the current floor. For this simulation, we assume that the
agent has full awareness of the layout of the room (i.e., can
directly access the entire map). In this simple simulation, the
agent simply looks up the location of each spatial unit our
software has labelled as “door.” A path finding algorithm
produces a path from the agents current location to any given
door in the scene. The path finding algorithm uses the spa-
tial units as nodes connected to each other and determines the
optimal path by calculating the shortest node-length. While
many algorithms can be used for path finding, we used a
steepest ascent hill-climbing algorithm for this simple task.

This process is iterative, exhaustively bringing the agent to
all doors on that floor.

In 2) we had the agent respond to (codified) instructions
“Walk to all the corners of the room, in order” (i.e., following
the perimeter of the room instead of walking randomly to any
corner). This simulation uses a slightly more sophisticated
spatial representation. Instead of simply choosing a corner
at random, the agent represents the appropriate spatial units
(corners) as being either “near” or “far.” A similar use of de-
scriptive categories was used in the ACT-R MOUT model,
to represent egocentric distance. In our case, these distance
terms are represented with overlaps, providing a fuzzy repre-
sentation of distance for the agent. In this example, the agent
can then identify the hard (i.e., near) and the deep (i.e., far)
corner of the room.

Unlike doors, which are identified directly from the ge-
ometry, corners are identified through reasoning about the
already-detected spatial units. Depending on the model, these
sorts of calculations can occur automatically (pre-labeled
given our system, using various techniques), or, potentially
determined during simulation by the agent. Using the node
system at run-time, in this way, would be far more efficient
than working with the geometry directly. We think this is
a good demonstration of potentially using our representation
scheme for modeling at different levels. While it is possible
to encode the corners in the representation scheme, there is
also the option to use a first-person spatial representation and
have the agent determine where corners are (presumably in
some cognitive manner).

Because there is no source of variance in our two models,
we qualitatively evaluated our simulations as either pass/fail.
In order to do this, we created a video in which the location
of the agent was represented within a topological map of the
environment (see Figure 2). These videos showed that the
agents in both simulations correctly navigated their environ-
ments to complete their given objectives.

Evaluation conclusion
We evaluated or software by first evaluating the detectors. We
did this by creating visualizations of our intermediate repre-
sentation which was created using our structure detectors. Al-
though we tested only two files, a simple house and a multi-
building complex, the 3D scene graphs of these two structures
were dramatically different. Not only was the multi-building
complex much larger, the structure contained a higher level
of detail. Importantly for our project, the simple house also
contained errors in hierarchical structure. In terms of param-
eters, the approach also generalizes well, as only the size of
the spatial units had to be modified from one file to the other.
Although we plan to do more extensive tests in the future, we
consider our detectors successful.

We also tested our intermediate representation scheme by
developing simple symbolic-level simulations. These sim-
ulations were designed to test the sufficiency of our repre-
sentation scheme for modeling action in 3D environments.
By using symbols such as ’door’ and ’corner’ we were able



to mimic the high level symbology often used by cognitive
architectures (such as Soar or ACT-R). The success of our
agents to complete their tasks, is good evidence that our in-
termediate representation is sufficient to support action like
navigation.

Discussion
We feel that this representation scheme is both simple to im-
plement and robust enough for a variety of modeling needs.
The linked node system is reminiscent of both the Soar
MOUTbot and ACT-R MOUT model representation schemes
and should be able to support modeling at different levels.

For example, our models have some similarity to the Soar
MOUTbots in that they have direct access to a complete map
of the environment. Model 2 shows, however, our represen-
tation scheme also supports perception to support egocentric
representations. This is shown in model 2’s ability to rep-
resent corners as ’near’ or ’far.’ Algorithms similar to those
used in model 2 could be used to simulate vision. For ex-
ample, one set a maximum vision distance, and calculate that
distance by adding together the widths of the spatial units.
A complex vision system would be able to calculate an en-
tire field of view and determine which nodes are visible given
the agents current heading. It is even plausible with a small
enough grain size for a modeler to restrict vision to nodes
within foveal azimuth. Linked with a visual memory system,
it is entirely plausible that an agent might have to attend to
different portions of the intermediate representation in order
to refresh its internal representation of the environment. The
linked node design makes it easy to calculate features such
as location, size, or distance, depending on the level of detail
required by the modeler.

Conclusion and future work
It should be noted that this project represents preliminary
work. While our software can be run pre-simulation-runtime,
thus limiting the effects of computational complexity, it
would be ideal to reduce complexity. It might be fruitful, for
instance, to exploit OpenFlight files for hierarchical structure,
regardless of any potential inconsistencies between files.

A significant amount of testing both of our software and
our representation scheme would also help determine our cur-
rent pitfalls. With an automated tool like the one presented
in this report, an extended analysis of its performance across
many different files is required. Doing so will allow us to
hone our system so that the representation scheme and proper
labels are being generated across many different renderings.

Furthermore we would like to test the range of language-
like representations that can be inferred from our represen-
tation scheme. While we can infer features such as “corner,”
we would like to develop more simulations to determine if we
can infer more complex features such as “behind the wall.”

Also, from our sample simulations we know that our rep-
resentation scheme is adequate for a simple simulation, in a
building without furniture and small objects, but it is currently

unclear whether it would scale-up to give the representational
granularity required of a more complex simulation. In fact, it
seems that a goal of the long-term research would be to de-
termine the optimal level of granularity for such simulations.

Our team would also like to investigate how to apply the
output of our software to a simulation within the 3D environ-
ment. To this end it might be useful to use a symbolic cogni-
tive architecture to determine the software needs of both the
3D simulation and the architecture. Furthermore this process
may illuminate ways to limit complexity or help the system
deal with the dynamic nature of the simulation. For instance,
the use of a cull visitor (used at run-time to render vectors)
to help determine if what the agent is seeing in real-time cor-
responds with what our system had previously detected. For
example, an explosion might have left a hole in a wall and
a cull visitor may help us detect such environment changes.
Such a system might provide a quick solution, with minimal
geometric processing, to update our representation as needed.

Finally, our team would like to investigate how to auto-
matically generate environments from a natural language-like
description. Currently, design of realistic virtual environ-
ments takes many hours of content creation both in terms of
the structural elements of buildings as well as furnishing and
other features of large buildings. Automating even parts of
this process would help bring down personnel costs associ-
ated with content creation.

Acknowledgments
This work was generously funded by an NSERC Engage
grant and CAE Professional Services.

References
Anderson, J. R., & Lebiere, C. C. (Eds.). (1998). The atomic

components of thought. Lawrence Erlbaum Associates.
(ACT-R book)

Best, B. J., & Lebiere, C. (2003). Teamwork, communication,
and planning in ACT-R agents engaging in urban combat
in virtual environments. In Proceedings of the 2003 ijcai
workshop on cognitive modeling of agents and multi-agent
interations (pp. 64–72).

Fleetwood, M. D., & Byrne, M. D. (2003). Modeling the
visual search of displays: A revised ACT-R/PM model of
icon search based on eye-tracking and experimental data.
Human-Computer Interaction, 21(2), 152–197.

Laird, J. (2001). It knows what you’re going to do: Adding
anticipation to a Quakebot. In Proceedings of agents (pp.
385–392).

Ting, B. S., & Zhou, S. (2009). Dealing with dy-
namic changes in time critical decision-making for MOUT.
Time(May), 427–436.

Wang, R., & Qian, X. (2010). Openscenegraph 3.0. Birm-
ingham, UK: Packt Publishing Ltd.

Wray, R. E., Laird, J. E., Nuxoll, A., Stokes, D., & Kerfoot,
A. (2005). Synthetic adversaries for urban combat training.
AI Magazine, 26(3), 82–92.




