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Abstract 

A cognitive model of visual imagination will produce what 
we call “incoherent” results when it adds to an imagined 
scene that comes from multiple contexts (e.g., “arrow” and 
“violin” with “bow”). We approach this problem by exploring 
the co-occurrence of labels in images.  We show that adding 
an incremental algorithm for examining networks of co-
occurrence associations to the top-n co-occurring labels with 
a particular query produces greater coherence than just 
selecting the top-n labels or randomly selecting labels.  
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Introduction 
Humans imagine various scenes and situations in order to 

facilitate a broad range of cognitive abilities. Planning, 
problem solving, hypothetical thinking, counterfactual 
thinking, theory of mind, and mental time travel are all 
included in this list (Davies, Atance, & Martin Ordas, 
2011). Though there is an extensive literature on the role of 
the imagination as it facilitates these abilities (see, for 
example, Markman, Klein & Suhr, 2012), the production of 
these imagined scenes remains largely unexplored. For the 
sake of brevity, this work exclusively focuses on the visual 
faculty, which is the most studied in the literature (Davies, 
Atance, & Martin Ordas, 2011). 

When someone imagines a visual scene while reading a 
novel, of a woman walking a dog, for example, the scene 
might be constructed from visual memories from many 
different experiences. How these particular experiences are 
selected from the larger set of all experiences is not 
intuitively obvious. If there is more than just the woman and 
dog in the scene, it is unclear what makes the inclusion of 
certain elements (e.g., a leash, tree, path, bird, sky, or sun) 
more likely or appropriate than others (e.g., a rollercoaster, 
map of Spain, or cruise ship). 

What is known is that people do not arbitrarily assemble 
what they imagine, even if it is largely fictional or involves 
fantastical creatures. There is an intuitive coherence 
imposed on imagined scenes that prevents unusual 
combinations. 

One way that humans might make this selection is through 
the co-occurrence of objects in visual memory (by visual 
memory we mean only the memory of visual things, and not 
a specific subsystem like the visuo-spatial sketchpad). Thus, 

when one is imagining a scene given an environmental 
query (e.g., a novel, question, or problem), mental processes 
might search visual memory for other objects that often 
occur with that query. If one imagines a woman walking a 
dog, it is not surprising that leashes, trees, birds, etc. are 
more likely come to mind. They all often occur together in 
the world. In this case, “a woman walking a dog” serves as 
the query and the other elements are what are returned by 
some imagination process. One way we might explore this 
idea is through the use of computational models. 

The Science of Imagination Laboratory Imagination 
Engine (SOILIE) is a computational model for the 
production of imagined scenes (Breault, Ouellet, Somers, & 
Davies, in press). In place of human ‘experiences’ and 
‘objects,’ SOILIE has images from the web and their 
corresponding labels. In order to generate a novel scene, 
SOILIE must determine which labels are appropriate to 
select when given a particular query. And, much like the 
human description given above, SOILIE currently uses co-
occurrence relations to make this selection. That is, how 
often one label is present in the same image with another 
label. The top n labels that co-occur with a particular query 
are then chosen to be included in the imagined scene. We 
call this method the “top-n model.” 

SOILIE derives these co-occurrence relations from the 
Peekaboom database of labelled images. With over fifty 
thousand of these images and ten thousand labels, the 
Peekaboom database is one of the largest and most diverse 
data sets of its kind. The data set is the combined result of 
two online games: the ESP Game and Peekaboom (Von 
Ahn, Liu, & Blum, 2006). In the former, pairs of players are 
shown the same image and without communicating try to 
enter the same words (Von Ahn & Dabbish, 2004). Words 
that both players enter are interpreted as being related to the 
image that they are viewing. In this way, common labels are 
applied to images collected from the internet. To prevent an 
overly constrained data set with only common words, labels 
that were repeatedly used for an image would become 
unusable. This generated a longer list and greater label 
diversity.  

SOILIE’s data set comes from a related game, 
Peekaboom, which uses ESP game data. Both games are 
designed to produce data that can be used in scientific 
research. Since these games were built with vision research 
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in mind, they seem particularly relevant for SOILIE’s task 
and illustrative of the co-occurrence cognitive model. 

SOILIE uses the Oracle of Objects (Astudillo, 2009) as its 
top-n model. The Oracle of Objects is an interface for a 
database of co-occurrence probabilities extracted from the 
Peekaboom database described above. Co-occurrence 
probabilities are calculated by dividing the total number of 
images (I) in the Peekaboom database that contain the co-
occurring label (l) and a particular query (q) by the total 
number of images with just the query. Using set theory 
notation, this yields: 

 

 
 
Where ˄ indicates set intersection and || indicates cardinality 
(i.e., the total number of elements in the set). The Oracle of 
Objects returns the ten labels that have the highest co-
occurrence value given a particular query.  

However, after working with this implementation of the 
top-n model, a problem became apparent. When images are 
selected purely on the basis of their co-occurrence with the 
initial query, the scenes produced are often contextually 
incoherent.  

For example, SOILIE was queried with the word ‘bow,’ 
which is a homonym. Each sense of a homonym should 
return a different set of coherent co-occurrence relations. A 
‘bow’ can be defined as a form of knot, the front of a ship, 
to bend at the waist, a weapon that shoots arrows, a tool 
used to play certain stringed instruments, etc. In the 
Peekaboom database, the ten highest co-occurring words 
with ‘bow’ are: arrow, woman, man, tie, hair, glasses, 
ribbon, hat, dog, and present. There are at least two distinct 
meanings of ‘bow’ in this output. The first makes sense in 
the context of the word ‘arrow’ and the second in the 
context of the word ‘present.’ These different contexts are 
invisible to SOILIE. Thus, the image that would be 
generated from this query of ‘bow’ that included both an 
arrow and a tie would be incoherent as it is drawing from 
two different contexts. 

The problem of ‘coherence’ is not exclusive to SOILIE. 
Models that address context need to find a way to select 
coherent combinations (Hullett & Mateas, 2009). 
Algorithms that only consider a single factor, such as the 
top-n model, are fundamentally insensitive to context: they 
collapse higher-order information into a problem-space that 
cannot accommodate the required complexity. Context 
intuitively requires multiple factors. This explanation does 
lend itself to an alternative. 

One way humans might resolve the problem of 
incoherence is by augmenting a process like the top-n model 
with a more detailed, associative search of their experiences. 
Our hypothesis is that this augmented approach will 
generate more coherent scenes than the top-n model alone. 
The augmentation occurs by examining the co-occurrence of 
each of the returned labels with each other, rather than just 
with the query.  

Theory 
The new, augmented approach, from now on described as 

Coherencer, operates as follows. First, a top-n search 
gathers the initial pool of four labels that co-occur with just 
the query. Then, an associative search checks the degree to 
which each label in the pool co-occurs with all the others, as 
well as with the query.1 The network of co-occurrence 
relations that results is tested against a selection threshold. 
Labels with low co-occurrence in the network are swapped 
out and new labels that co-occur with the query are 
randomly swapped in until the threshold for the network as 
a whole is exceeded. Once the threshold is exceeded, the set 
that remains is returned for inclusion in the imagined scene. 

Research in neuroscience suggests that visual working 
memory can hold approximately three to five objects of 
average complexity (Cowan, 2001; Edin, et al., 2009; Luck 
& Vogel, 1997; Marois & Ivanoff, 2005; Wheeler & 
Treisman, 2002). Thus, it is assumed that on average an 
imagined scene has approximately three to five elements in 
it at any given time. Similarly, four labels, excluding the 
query, are retrieved from the co-occurrence data gathered 
from the training set and five labels in total are selected per 
scene. We decided that this number, despite being in the 
upper part of the range, was the most useful: preliminary 
research suggested that larger sets of labels increased the 
divergence in the success of the models, five is still in the 
accepted range for visual working memory, and the query 
does not really need to be maintained in working memory to 
the same degree (an individual could always re-query) nor 
does it need to be retrieved. 

The first part of Coherencer operates much like the Oracle 
of Objects by selecting the four labels with the highest co-
occurrence probability with the query (i.e., a top-4 model). 
The second part takes all five labels, including the query, 
and produces a co-occurrence matrix. Using the ‘bow’ 
example, described above, one would get Table 1.2  

 
Table 1: Co-occurrence matrix of ‘bow,’ showing the co-
occurrence of the label in the column with the label in the 
row. 

 
Labels Bow Arrow Woman Hat Tie 
Bow - 0.206 0.235 0.118 0.118 
Arrow 0.021 - 0.006 0.003 0.000 
Woman 0.003 0.001 - 0.061 0.019 
Hat 0.005 0.001 0.201 - 0.030 
Tie 0.013 0.000 0.151 0.074 - 
 
Each cell in the matrix holds the co-occurrence probability, 
with the row as the query (q) and the column as the co-

                                                           
1 The co-occurrence with the query still contributes to the co-

occurrence overall, which is why it is included in the search 
despite previous consideration in the top-n model. 

2 Though the values of a label with itself should actually be 1 
mathematically, it was convenient to ignore the values in the 
context of the implementation. 



occurring label (l). Note that the co-occurrence matrices that 
result from Coherencer are not symmetrical. Since the total 
number of images that contain each label can be different, 
the probability that results can also be different. 

In the next step, the mean for each row is calculated and 
then the mean of these means is calculated (i.e., the mean 
probability for the entire matrix). If this total mean is higher 
than a threshold,3 the sample is deemed ‘coherent,’ the 
algorithm stops, and returns the set. If the total mean is 
below the threshold, the label row with the lowest mean 
probability is removed from the sample and a new label is 
randomly selected from all the remaining labels that co-
occur (above 0.0) with the initial query. If the algorithm 
exhausts these co-occurring labels without finding a 
coherent selection, it will fail and a coherent image is 
deemed impossible. Thus, Coherencer yields a member (R) 
of the solution set (S), where S meets the following criteria 
in set theoretic notation: 

 

 
 
Here, q is the query; Cq is the set of all co-occurring labels 
with q; T is any subset in S; T × T is the set of all label pairs 
(l1, l2) of the elements of T with itself (also known as the 
Cartesian product); P means the co-occurrence probability 
as previously defined; ˄ means ‘and’ as per propositional 
logic; || means cardinality; ⊆	means ‘subset or equal to’; 
and,	∈	means ‘element of.’ 

To test the quality of this method we compared it to the 
competing top-n method and a random control method. 

Method 
There are three models that were compared: Coherencer, 

the top-n model, and a random search. The top-n model only 
retrieves the four labels with the highest co-occurrence 
probability with the query. The random search method 
randomly selects any four labels in the training set, ignoring 
co-occurrence. 

The comparison proceeded as follows. The images in the 
Peekaboom database were randomly divided into equal 
halves: a test and training set. Each half was filtered to only 
include labels that were contained in both halves. After this 
filtration, images that had no labels were removed. The test 
and training sets were left with 28,496 and 28,483 images, 
respectively, after filtration.  

One thousand labels were randomly selected, 
algorithmically, from the remaining 5,179 labels. This 
process occurred twice with possible overlap in the labels, 
once for each of the chi-square tests run on the results.  

Each label in the first set of one thousand labels was run 
through the top-n and random search and each label in the 
second set of one thousand labels was run through the top-n 

                                                           
3 Preliminary tests showed 0.37 to be ideal. A more detailed 

analysis will be performed in future work. 

and Coherencer. Each query plus four returned labels is an 
imagined scene. 

The results for each of the algorithms were assessed with 
regard to the test set. If at least one image in the test set 
contained the five labels that were selected by a particular 
algorithm, including the query, the algorithm scored one 
point. If there were no images containing the five labels, the 
imagined scene did not score a point. Using the total number 
of points (which could range, theoretically, between 0 and 
1000), we compared the random search to the top-n model 
as well as the top-n model to Coherencer. 

Results 
The results came out as expected. Coherencer had more 

successful matches with the test set than the top-n model. 
Similarly, the top-n model had more successful matches 
with than the random search. The statistical details are as 
follows. 

Top-n performed significantly better than random search, 
χ2(1) = 69.46, p < .001 (see Table 2). This seems to 
represent the fact that, based on the odds ratio, the odds of 
success were 10.03 times higher with the top-n model than 
with the random search. Coherencer also performed 
significantly better than top-n, χ2(1) = 37.62, p < .001 (see 
Table 3). The effect, based on the odds ratio, suggests that 
the odds of success were 2.32 times higher for the 
Coherencer model than for the top-n model. 

 
Table 2: χ2 calculation between random search and top-n. 
 

Model 
 Test 

Total 
 Failure Success 

Random 
search 

Count 990.0 10.0 1000.0 

 Expected 949.0 51.0  
 Std. 

Residual 
1.3 -5.7 

 

Top-n Count 908.0 92.0 1000.0 
 Expected 949.0 51.0  
 Std. 

Residual 
-1.3 5.7 

 

Total Count 1898.0 102.0 2000.0 
 
Table 3: χ2 calculation between Coherencer and top-n. 
 

Model 
 Test 

Total 
 Failure Success 

Top-n Count 914.0 86.0 1000.0 
 Expected 867.5 132.5  
 Std. 

Residual 
1.6 -4.0 

 

Coherencer Count 821.0 179.0 1000.0 
 Expected 867.5 132.5  
 Std. 

Residual 
-1.6 4.0 

 

Total Count 1735.0 265.0 2000.0 



Discussion 
The results support the idea that Coherencer generates 

elements that create a more coherent scene than the top-n 
model, which is in turn an improvement on a random 
search. For Coherencer, this fact is all the more impressive, 
given how many challenges were stacked against it. 
Partially, these challenges were due to lexical confounds. 
For example, synonyms confine the search space (e.g., when 
one searches ‘dog’ it will not include the related 
associations for ‘puppy’), confound the output (e.g., by 
returning ‘puppy’ when searching for ‘dog’), or results in 
false negatives (e.g., ‘puppy’ is included in an image with 
the other labels but ‘dog’ is not; the match fails as a result).4 
Hyponyms and hypernyms (e.g., ‘dog’ to ‘German 
Shepherd’ and ‘German Shepherd’ to ‘dog,’ respectively) 
result in similar problems as do meronyms (e.g., ‘nose’ to 
‘face’) and other lexical relations. Future research by the 
Science of Imagination Laboratory is focused on 
ameliorating many of these problems. In addition, there are 
also problems in the train-test design. Using only half of the 
available data (the training set) underrates the performance. 

There has been some related research. Paul Thagard’s 
(2000) work on coherence is worth noting in particular. 
Thagard explicitly outlines a similar algorithm to 
Coherencer as one of the possible computational approaches 
for resolving coherence problems. He calls this approach an 
“incremental” algorithm. Like Coherencer, the incremental 
algorithm evaluates the coherence of a single element at a 
time relative to the current pool of selected elements. 
However, there are some pronounced differences. First, the 
incremental algorithm builds its initial pool one element at a 
time using the method just described whereas Coherencer 
seeds its initial pool with the top-n algorithm (i.e., relative 
only to the query). Second, the space within the incremental 
algorithm’s pool is infinite: it could literally contain the 
entire set of possible elements if that maximized coherence. 
In contrast, Coherencer has a finite limit on the size of its 
pool. Third, Coherencer does not maximize coherence; it 
makes sure that it passes a certain threshold. Fourth, once an 
element has been selected by the incremental algorithm, it 
cannot be unselected (i.e., there is no backtracking with 
selected elements). Coherencer maintains backtracking 
capabilities for selected elements; though, it cannot 
backtrack relative to rejected elements (another 
commonality). Despite these differences, we take both 
algorithms to be of the same class of algorithms and 
‘incremental’ works as a label for this class: it highlights the 
serial approach that is a defining feature of the class of 
algorithms. 

After defining the original, incremental algorithm, 
Thagard proceeds to argue that these algorithms are 

                                                           
4 We would argue that these challenges do not completely 

generalize to the top-n model. For example, increasing the search 
space would increase the interference or noise for the top-n model 
while it increases the possibility of finding a better match for 
Coherencer. Improvements that restrict the search space might 
generalize. Future research will examine these features. 

problematic, at least prescriptively (i.e., for indicating the 
ideal), since they often lead to suboptimal solutions. 
Largely, this is a result of the serial increments by which the 
algorithm makes comparisons, a property that we take to be 
central to the class of incremental algorithms. That is, since 
Coherencer and similar incremental algorithms can only 
examine the relations of the current element, rather than all 
possible elements in parallel, these algorithms are more 
likely to get trapped on optima that are less than ideal 
outside their current locale.  

For Coherencer, for example, this means that it may be 
the best decision to remove ‘arrow’ (lowest total row and 
column co-occurrence of 0.238) given the set described 
previously, but ‘arrow’ might actually be a part of the set 
with the highest possible co-occurrence for the query. 
Rejecting ‘arrow,’ which is reasonable at this stage, 
prevents the algorithm from re-attaining it later or even 
finding the theoretical ‘best set’ of which arrow is a part. 
Though ‘backtracking’ for these rejected elements has been 
implemented as a fix for serial approaches, Thagard 
suggests that this is still worse than some alternatives.   

In response to this problem, Thagard (2000) proposes a 
connectionist model that is not hindered by serial processes. 
These models examine possible solutions in parallel, which 
decreases the possibility of getting stuck on sub-optimal 
solutions. In brief, the construction of this model proceeds 
as follows. 

For every element (e.g., label), construct a node in the 
network. For every positive constraint between two 
elements (i.e., where inclusion of one element, at minimum, 
increases the likelihood of inclusion of the other element; 
co-occurrence in the context of this work), construct an 
excitatory link between the corresponding nodes. For every 
negative constraint (i.e., the opposite of a positive 
constraint; unclear in the current context, but possibly a co-
occurrence of 0), construct an inhibitory connection 
between corresponding nodes. Assign an initial activation to 
each node and then update all the nodes in parallel using one 
of the many update equations (see, for example, McClelland 
& Rumelhart, 1989). Continue updating the activations until 
the nodes in the network cease to fluctuate or fluctuate 
within a small margin.  

Thagard has implemented a number of such networks in 
related domains (e.g., Thagard, 1989, 1991, 1992a, 1992b, 
2000; Nowak & Thagard, 1992a, 1992b; Eliasmith & 
Thagard, 1997; Thagard, Holyoak, Nelson & Gochfeld, 
1990). Though there are counter-arguments to his position, 
they are not of interest here. Instead, what is important is the 
relationship Thagard highlights between incremental 
algorithms and bounded rationality.  

Bounded rationality is an idea initially proposed by 
Herbert Simon (1991) that focuses on the limitations of 
human decision making. Thagard observes that both 
incremental algorithms and much of human thinking results 
in sub-optimal solutions to problems of various types, 
including coherence problems. Thus, he argues, this 



intersection between the bounds of rationality and 
incremental algorithms is in need of further research.  

In a similar line of inquiry, research in working memory 
has also described a limited, serial system—the episodic 
buffer—that roughly matches what Thagard is describing 
(Baddeley, 2000; Baddeley, 2002a; Baddeley, 2002b). The 
episodic buffer is believed to be the means of integration for 
the different sense modalities as well as the retrieval 
mechanism for long-term memories. Such a system would 
be perfectly poised to play a leading role in imaginative 
processes, at least in so far as it might supply the ‘material’ 
on which these processes operate. Even in such a restricted 
role, the limitations of the episodic buffer might result in 
downstream limitations, and this suggests a rather simple 
explanation for bounded rationality. Two interesting 
additional implications are that chunking may play a role in 
expanding the memory limitations of iterative models and 
that attention may have a significant role in the integrative 
processes of these mechanisms. 

In the current research, these observations suggest 
interesting implications for Coherencer. With respect to 
human cognition, Coherencer might better model the 
bounds of human rationality than the alternatives, including 
Thagard’s connectionist models. The parallels with the 
episodic buffer suggest that Coherencer might also provide 
a useful computational model for this subsystem of working 
memory. Both of these parallels give credence to 
Coherencer as a useful model of certain processes in human 
cognition. Future research will continue to examine these 
parallels. 

Other noteworthy implications can be drawn from the 
model. First, Coherencer’s augmentation of the top-n model 
suggests that humans might generally use the most common 
associations when imagining visual scenes, as well as other 
modalities. More specifically, the query and top-n model 
combined might illustrate a form of cognitive priming. This 
priming would act much like the initial seeding process (i.e., 
using the top associations for the query from the top-n 
model). This interpretation also supports the exclusion of 
the query from the limitations of visual working memory 
capacity: research suggests that implicit visual memory, like 
that of visual priming, might have a much higher capacity 
than visual working memory (see, for example, Chun, 2000; 
Chun & Nakayama, 2000). Parallels between Coherencer 
and visual or word associations and priming in human 
populations might be an avenue for exploring these 
questions. 

Coherencer also suggests that humans compare pairs of 
associations when checking for coherence. However, there 
is no obvious reason why processing should stop there. 
Comparisons of triplets, quadruplets, and even quintuplets 
of associations might lend themselves to coherence 
problems and their associated solutions. Implications for 
cognition could be different for these complex networks. 
Future research will explore these possibilities. 

Conclusion 
Contextual coherence in visual imagination is a 

challenging problem both theoretically and computationally. 
The current research supports the use of Coherencer as a 
useful augmentation of the original top-n model for this 
problem. We have shown support for the notion that co-
occurrence with the query alone is not sufficient for 
returning a coherent set of labels and that our solution, 
checking the co-occurrence between all the returned labels, 
can improve coherence of objects in imagined scenes. 

This research contributes to the Science of Imagination 
Laboratory’s work on SOILIE, the exploration of 
incremental algorithms and bounded rationality, as 
discussed by Thagard (2000), and to research on the 
episodic buffer in working memory. Future research will 
explore different types of thresholds, different numbers of 
associated terms, chunking, backtracking for rejected 
elements, direct comparisons with Thagard’s connectionist 
models, comparisons with other models, the resolution of 
various lexical confounds, the role of attention, parallels 
with the episodic buffer, and parallels with working memory 
more generally. 
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