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Abstract. Case-based problem solving refers to reasoning about new prob-
lems by reusing past cases.  Visual case-based problem solving pertains to re-
use of past cases that contain only visual knowledge. In this paper, we explore 
the problem of automated adaptation of diagrammatic cases, i .e., automatic 
transfer of diagrammatic knowledge from a source case to a target problem. 
We describe Galatea, a computer program that adapts diagrammatic cases. Ga-
latea explicitly represents knowledge states in the source case in the form of 
propositions, and transfers visual transformations from the source case to the 
target problem. A companion paper in the same conference [15] addresses the 
task of retrieving diagrammatic cases.  

   
1. Introduction 
Case-based problem solving refers to reasoning about new problems by reusing 

past cases. Research on case-based reasoning generally has focused on cases that 
contain functional and causal knowledge, e.g., goals and plans. However, psycho-
logical evidence clearly indicates that visual knowledge too plays an important role 
in complex human information processing [e.g. 10]. In design, for example, draw-
ings and diagrams play a critical role in expressing, communicating, using and 
learning cases. There is also documentary evidence for visual reasoning in scientific 
problem solving [11]. Further, psychological evidence also indicates that case-based 
problem solving itself is facili tated by diagrams and animations [13], and visually 
evocative phrases in stimuli [7]. Therefore, an important issue in case-based problem 
solving is how to use cases that contain visual knowledge. In this paper, we focus on 
visual case-based reasoning, i.e., reasoning with cases that contain only visual 
knowledge, where visual knowledge consists (only) of information about how an 
entity appears.  Although visual cases in general may contain knowledge of many 
kinds, such as photographs, drawings, diagrams, animations and videos, this work 
deals only with diagrammatic knowledge represented symbolically. Specifically, this 
work deals with diagrammatic knowledge of shapes, their sizes, locations and mo-
tions, and the spatial relationships among the shapes. 

                                                        
1 Davies, J. & Goel, A. K. (2003). Visual case-based reasoning I: Transfer and adaptation. 

Proceedings of The 1st Indian International Conference on Artificial Intelligence. Springer. 



ANALOGY [3] and Letter Spirit [9] are earlier AI programs that reasoned about 
visual cases. Unlike these systems, we are interested in general problem solving 
where the source cases may contain problem-solving procedures, i.e., ordered se-
quences of problem-solving steps. The core question in our work is how to represent 
visual problem solving and how to transfer the problem-solving procedures from the 
source case to the target problem. 
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Fig. 1. The steps of analogy. Galatea implements transfer, adaptation, and evalua-

tion. This paper focuses on transfer and adaptation. 
 
In general, case-based analogical problem solving spawns several tasks as il lus-

trated in Figure 1. This paper focuses on the task of transfer and adaptation. This 
task takes as input a target problem, an appropriate source case, and an initial map-
ping between various elements in the target and source cases. A companion paper in 
the same conference [15] addresses the task of retrieving diagrammatic cases from a 
computer-based library. We are presently integrating the computer programs de-
scribed in the two papers. 

 
2   An Illustrative Example 

    Our model is implemented in a computer program called Galatea. We begin with 
a simple example that is easy to explain and yet illustrates some of the issues.  Gala-
tea is given the target problem of feeding six people with one pizza. It is also given a 
source case in which a cake was cut into four pieces for four people. The issue is how 
might a case-based problem solver represent its diagrammatic knowledge of the 
source case and target problem, and how might it transfer the relevant problem-
solving steps from the source to the target? 

Galatea represents a source case as a series of knowledge states starting from the 
initial knowledge state and ending in the final or goal knowledge state. The simple 
cake case contains only two knowledge states, the initial and the goal state. A knowl-
edge state is represented diagrammatically in the form of shapes, their locations, 
sizes, and motions (if any), and the spatial relationships among the shapes. For the 
cake case, Galatea represents cake in the initial knowledge state as a rectangle of a 
specific size, and the goal knowledge state as containing four, smaller rectangles.  
For the target pizza problem, Galatea initially knows only the initial knowledge state 
and represents the Sicil ian slice pizza as a rectangle.  

Succeeding states in the series of knowledge states are related through visual 
transformations such as move, rotate, scale and decompose. Each transformation 
relates two knowledge states. In the cake case, the decompose transformation takes 
one shape (the rectangle) and a number n (an argument of the transformation) and 

 



results in n smaller pieces of the same shape.2 Galatea initially does not know of any 
transformations for the target pizza problem. 
    The question now becomes how Galatea can transfer knowledge of the decompose 
transformation from the source cake case to the target pizza problem. Galatea at-
tempts to transfer the knowledge states and visual transformations following the 
initial state in the source cake case to the target pizza problem. One source of diffi-
culty here is that while the number of people in the cake case is six, the number of 
people in the pizza problem is four.  Galatea uses the concepts of sets and members 
to address this issue.  It explicitly represents the people as belonging to a set in the 
source and target cases. The decompose transformation takes as an argument a set, 
the members of which is counted for each case: in the cake case, this set contains six 
members; in the target problem it contains four. When the decompose transforma-
tion is transferred to the target pizza problem, it is instantiated with the count of the 
set of people in the target, not the source. When the transformation is executed, it 
generates six smaller rectangles in the final knowledge state of the target problem. 

 
3   Knowledge Representation and Algorithms 

In this section, we will  describe Galatea's representation language and algorithm 
using Gick and Holyoak’s fortress/tumor problem [7] as a running example: the 
problem is based on experiments done in which participants are given a story about a 
general who needs to break his army up into smaller groups so they can converge on 
a fortress through different roads, because each road has a mine on it that will  go off 
i f the whole army crosses it. Participants are expected to transfer this solution to a 
target problem in which a tumor needs to be radiated without hurting the healthy 
tissue on its way in. The solution using the source case is to use several weaker rays 
of radiation coming in from different directions. 

3.1 Knowledge Representation   
Galatea describes visual cases using Covlan (Cognitive Visual Language), which 
consists of knowledge states, primitive elements, primitive relations, primitive 
transformations, general visual concepts, and correspondence and transform 
representations.  In Covlan, all knowledge is represented as propositions. 

Knowledge States: Knowledge States in Covlan are symbolic images, or s-
images, which contain visual elements, general visual concepts, and relations 
between them. Cases are represented by a series of s-images, connected with 
transformations. 

Visual Transformations. An S-image in the sequence is connected to other s-
images before and after it with transformations. Transformations, like ordinary func-
tions, take arguments to specify their behavior.  

These transformations control normal graphics transformations such as transla-
tion (move-to-location, move-to-touch, move-above, move-to-right-of, move-to-left-

                                                        
2 In the current version of Galatea, the decompose transformation cannot break up one shape 

into n smaller different shapes, as one might cut a round pizza into roughly triangular 
shapes. To do this would require changing the transformation so that i t either had a com-
plex notion of how shapes can be sectioned, or took as an argument the resultant shapes. 



of, move-below), rotation (rotate), and scaling (set-size). In addition there are trans-
formations for adding and removing elements from the s-image (add-element, re-
move-element). Certain transformations (start-rotating, stop-rotating, start-
translation, stop-translation) are changes to the dynamic behavior of the system 
under simulation. For example, rotate changes the initial orientation of an element, 
but in contrast start-rotating sets an element in motion.  

The fortress/tumor example requires two transformations. The first is to decom-
pose the army into several groups, and the second is to use move-to-location to move 
them to the separate roads (see Figure 2.) 

Primitive Elements. These are the visual objects in a diagram. The element types 
are polygon, rectangle, triangle, ellipse, circle, arrow, line, point, curve, and text. 
Each element is represented as a frame with attribute slots, such as location, size, 
orientation, or thickness. The primitive elements are organized into a two-tiered 
hierarchy. For example, rectangle and triangle are subclasses of polygon; circle is a 
subclass of ellipse.  

General Visual Concepts. These act as slots for the primitive elements as well as 
arguments for the visual transformations. The concepts are location, size, thickness, 
speed, direction, length, distance, angle, and direction. Each concept has several 
values it can take. For example, the size can be small, medium, or large, and thick-
ness can be thin, thick or very-thick. Location specifies an absolute qualitative loca-
tion in an s-image (bottom, top, center, etc.)  

Primitive Visual Relations. This class of symbols describes how certain visual 
elements relate to each other and to the values taken by general visual concepts. The 
visual relations are touching, above-below, right-of-left-of, in-front-of-behind, and 
off-s-image. The motion relations are translation and rotation. 

Correspondence and Transform Representations. The knowledge of which ob-
jects in one knowledge state correspond to which objects in another is a mapping, 
which consists of a set of alignments between objects. Different sets of alignments 
compose different mappings. The i th s-image in the source and the i th s-image in the 
target have a correspondence between them; each correspondence can have any 
number of mappings associated with it (determining which mapping is the best is the 
“mapping problem.”) The correspondence and mapping between the initial s-images 
(i=1) in the source and target is given as part of the input to Galatea; the system 
generates the subsequent correspondences and mappings.   

Similarly, successive s-images in a series have transform-connections.  These are 
needed so that Galatea can track how visual elements in a previous knowledge state 
change in the next.  

3.2   Algorithm 
Following is the control structure for Galatea’s transfer of problem-solving proce-

dures from a source case to the target problem. We will describe the transfer of the 
first transformation as a running example. Figure 2 shows the s-image structure for 
the fortress/tumor problem. The figure references in the algorithm description below 
refer to Figure 2. 

 
 



 
 

 
Fig. 2. The top three boxes, going left to right, are the three s-images in the fortress case. 

They are connected by transformations: the first and second by decompose and the second and 
third by move-to-set. Decompose takes the soldier path and breaks it up into n thinner soldier 
paths, where n, the argument to Decompose, can take an integer value, e.g., 4.  Likewise, in 
the tumor problem, whose s-images run along the bottom of the Figure, decompose turns the 
single ray into n thinner rays. The move-to-set transformation puts these thin lines in the 
appropriate places. The gray area shows the output of Galatea 

 
 
1. Identify the first s-images of the target and source cases. 
2. Identify the transformations and associated arguments in the current s-

image of the source case. This step finds out how the source case gets from the 
current s-image to the next s-image. In our example, the transformation is decom-
pose, with ``four'' as the number-of-resultants argument (not shown). 

3. Identify the objects of the transformations. The object of the transformation 
is what object the transformation acts upon. For the decompose transformation is the 
soldier-path1 (the thick arrow in the top left s-image in Figure 2.)  

4. Identify the corresponding objects in the target problem. The ray1 (the 
thick arrow in the bottom left s-image) is the corresponding component of the source 
case's soldier-path1, as specified by the correspondences between the s-images (not 
shown). Adaptation of the arguments can happen three ways: If the argument is a 
component of the source s-image, then its analog is found. If the argument is a func-
tion, then the function is run (note that the function itself may have arguments which 
follow the same adaptation rules as transformation arguments). Else the arguments 
are transferred literally. 

5. Apply the transformation with the arguments to the target problem com-
ponent. A new s-image is generated for the target problem (bottom middle) to record 



the effects of the transformation.  The decompose transformation is applied to the 
ray1, with the argument ``four.'' The result can be seen in the bottom middle s-image 
the Figure. The new rays are created for this s-image. As the soldier paths are put 
into a set in the source case, so the rays are put into a set in the target. 

6. Map the original objects to the new objects in the target case. A transform-
connection and mapping are created between the target problem s-image and the new 
s-image (not shown). Maps are created between the corresponding objects. In this 
example it would mean a map between ray1 in the left bottom s-image and the four 
rays in the second bottom s-image. This system does not solve the mapping problem, 
but a mapping from the correspondences of the first s-image enable the mappings for 
the subsequent s-images to be automatically generated. The transformation is associ-
ated with the map so the target case itself can be put in the case library as a possible 
source in the future. 

7. Map the new objects of the target case to the corresponding objects in the 
source case. Here the rays of the second target s-image are mapped to soldier paths 
in the second source s-image. This step is necessary for the later iterations (i.e. going 
on to another transformation and s-image). Otherwise the reasoner would have no 
way of knowing which parts of the target s-image the later transformations would 
operate on. 

8. Check to see if goal conditions are satisfied. If they are, exit, and the problem 
is solved. If not, and there are further s-images in the source case, set the current s-
image equal to the next s-image and go to step 1. If there are no further s-images, 
then exit and fail. 

4 Discussion: Related Work 
Below we describe the relationship of this work to both case-based reasoning and 
analogical reasoning. However, since this paper focuses on transfer and adaptation, 
we limit the discussion to these tasks; the companion paper [15] describes the rela-
tionship to other work on case retrieval.  
    Case-Based Reasoning: Many case-based systems contain multi-modal cases, i.e., 
cases that contain both visual (e.g., photographs, drawings, diagrams, animations 
and videos) and non-visual knowledge (e.g., goals, constraints, plans and lessons). 
However, many of these projects (e.g., ARCHIE, [12], AskJef, [1]) leave the adapta-
tion task to the user and do not automate the transfer of diagrammatic knowledge 
form a source case to a target problem. 

FABEL [6] is an example of a case-based system that adapts diagrammatic cases 
in the domain of architectural design. The diagram in FABEL specifies the spatial 
layout of a building or similar structure.  It adapts source diagrams by extracting and 
transferring specific structural patterns to the target problem. It uses domain-specific 
heuristics to guide pattern extraction and transfer. Galatea too adapts diagrams by 
extracting and transferring patterns. Pattern transfer in Galatea is facili tated by three 
main elements. Firstly, Galatea explicitly represents the knowledge states of its 
source cases in the form of s-images. Secondly, each s-image is composed of primi-
tive visual elements and relations. Thirdly, succeeding knowledge states in Galatea's 



source cases are related by primitive visual transformations. In this way, Galatea 
captures the diagrammatic problem solving of the source cases. Given a mapping 
between the visual elements in the target problem and a source case, this knowledge 
enables Galatea to extract and transfer the appropriate series of visual transforma-
tions from the source case to the target problem. In particular, the knowledge states 
identify the names and arguments of specific transformations that need to be trans-
ferred from the source case to the target problem. 

Analogical Reasoning: Theories of analogical reasoning, e.g., such as SME [4] 
and LISA [8], emphasize transfer of complex relations from the source to the target. 
Galatea too transfers complex relations. In particular, i t addresses the problem of 
transferring problem-solving procedures that contain an ordered series of operations. 
Some relation-based theories of analogical reasoning are structure-based while others 
are content-based. SME, for example, provides a uniform structure-based mechanism 
for analogical reasoning that is intended to work independently of any specific con-
tent account. Content-based theories, such as [15], emphasize the content of the 
representations, and the mechanisms of analogical reasoning are content-dependent. 
Galatea too is a content-based theory of analogical reasoning. 

The visual primitives that describe a knowledge state in Galatea are similar to that 
of GeoRep [5].  Galatea however uses them for a task quite different from that of 
GeoRep: GeoRep extracts and abstracts visual relations in line drawings; in contrast, 
Galatea transfers a problem-solving procedure from a source case to a target prob-
lem. To do so, in addition to the visual primitives for describing a knowledge state, 
Galatea uses primitive transformations that act on knowledge states. Galatea's notion 
of sets is also similar to the notion of groups in GeoRep. GeoRep dynamically gener-
ates groups for abstracting visual relations from line drawings while Galatea uses 
sets to enable transfer. 

As mentioned in the introduction, our work on Galatea builds on the ANALOGY 
program [3] and the Letter Spirit program [14, 9]. ANALOGY performed simple 
geometric analogies of the kind that appear on many intelligence tests. Let us sup-
pose that each of A, B, C, D, E and F is a simple arrangement of simple geometric 
objects, e.g., a small triangle inside a large triangle, a small circle inside a larger 
circle, etc. Given an analogy A:B, and given C and multiple choices D, E and F, 
ANALOGY found which of D, E, and F had a relationship with C analogous to that 
between A and B. It represented the objects and the spatial relationships between 
them in the form of semantic networks, which enabled it to compare the spatial 
structure of the various arrangements. 

ANALOGY found similarities and differences between visual cases by inferring 
the transformations (called rules) describing how A transforms into B. It had an 
ontology of shapes (e.g., triangles and circles) and transformations (scaling, rotation, 
reflection, addition, and deletion). Since the mapping between A and B and the 
mapping between A and C are not given, in cases where there is any ambiguity, all 
possible mappings were generated. For each mapping between A and B, it inferred 
the transformations between them A and B. This transformation inference process 
also happened between C and all answer choices. ANALOGY’s choice for the best 



answer was based on the similarity of the inferred transformations for the source to 
the inferred transformations of the targets. 

Like ANALOGY, Galatea has an ontology of shapes and transformations. Unlike 
ANALOGY, Galatea represents sets of objects and actions on them because it needs 
to adapt transformations during transfer from the source case to the target problem. 
ANALOGY neither transfers nor adapts transformations. Thus, ANALOGY cannot 
generate new diagrams; it can merely select among given diagrams. Therefore, while 
ANALOGY can match two diagrams, it cannot use diagrammatic knowledge for 
problem solving. 

Letter Spirit takes as input some number of “seed letters”  in a font and outputs the 
rest of the alphabet in the same font.  There are three main parts: The Examiner, the 
Adjudicator, and the Drafter. The Examiner is a letter-recognition system that identi-
fies the seed letters and determines what they are and which parts of each letter play 
which “roles”  (e.g. crossbar for a t or an f.) The Adjudicator determines the “spirit,”  
or style, in which the input letters are written. The Drafter, then, draws the rest of 
the letters of the alphabet, using the discovered style. Thus the targets are multiple, 
but always from the Roman alphabet. Generated letters must be recognizable as the 
correct letter (as determined by the Examiner) and must be in the spirit of the seed 
letters (as determined by the Adjudicator.) As letters are created, they effectively 
become additional source letters. The system has a detailed knowledge of letters, and 
what roles are played in each. For example, the letter “b”  has a left-post and a right-
bowl. The spirit consists of things l ike transformations (e.g. suppress-crossbar) and 
rules (e.g. no-diagonals). At a lower level of representation letters are straight-line 
picture elements (called quanta) arranged in a grid (the fonts are actually called 
gridfonts for this reason).  

Letter Spirit has many functions that Galatea does not, for example, a built-in 
evaluation system and multiple targets. However, some aspects of Letter Spirit’s 
representations and reasoning appear to be domain-specific. Galatea is meant to be 
applicable to a larger class of problems and as a result its representation and process-
ing are not limited to any specific domain.  

The most important difference between Galatea and Letter Spirit is that Galatea 
can handle transfer of problem-solving procedures that Letter Spirit cannot. The 
procedures are strongly ordered sequences of visual transformations. For example, in 
the fortress problem there are two transformations that take place: The army (repre-
sented as a thick line) is split into smaller armies (thin lines.) Then these smaller 
l ines are moved to various points on the s-image. What makes this problem funda-
mentally different from those dealt with by ANALOGY or Letter Spirit is that the 
order of operations is critical—the thin lines cannot be moved unti l they exist, and 
they do not exist before the first transformation (decompose) occurs, and generates 
them. Though both Letter Spirit and ANALOGY can both represent multiple trans-
formations, they cannot transfer transformations that rely on the output of previous 
transformations. 

We note that other systems have addressed different visual aspects of the fortress/ 
tumor problem. Diva, for example, [2] addresses the issue of analogical mapping.  

 



5   Conclusion 
Galatea shows that at least for problem solving in diagrammatic cases, purely vis-

ual knowledge is sufficient for transfer and adaptation, if a mapping between the 
target problem and source case is given. Galatea provides one method for analogical 
transfer under the above conditions. The method explicitly represents the problem 
solving in the source case in terms of knowledge states (composed of primitive ele-
ments) and visual transformations between the states. It addresses the target problem 
by transferring the primitive transformations in the source case one by one and con-
structing new knowledge states after each transformation. 
    Galatea also raises some issues that require additional research. Firstly, Galatea 
suggests that in order to transfer strongly ordered procedures, the visual case-based 
reasoner must not only represent the knowledge states in the source case but also 
generate intermediate knowledge states in the target problem. Going back to the 
tumor example, to transfer the move-to-location transformation from moving the 
armies to the rays, the rays need to exist as symbols in the agent’s knowledge. To 
accommodate this need, Galatea generates intermediate states following each trans-
formation in the target.  

Secondly, Galatea suggests that not only does the intermediate state need to be 
generated, but a new mapping between the intermediate source state and the inter-
mediate target state must be generated as well. The reason is that while the reasoner 
may know which objects in the source case are transformed, it cannot always use the 
mapping between the initial states of the source and the target to determine which 
part of the target gets transformed because some parts are generated during the prob-
lem solving. For example, in the tumor example, the rays were not a part of the ini-
tial state of the target. Galatea uses the mappings between the source and target 
along with the mappings between the successive states in the analogs to infer this 
mapping, which enables it to infer that it is the rays that need to be moved in the 
second transformation. 
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