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Abstract

Computationalmodelsof analogicalproblemsolv-
ing have traditionally describedsourceand target
domainsin terms of their causalstructure. But
psychologicalresearchshowsthatvisualreasoning
playsa part for many kindsof analogies.This pa-
perdescribesamodelthattransfersasolutionfrom
a sourceanalogto a new targetproblemusingonly
visual knowledgerepresentedsymbolically. The
knowledgerepresentationis basedonalanguageof
primitivevisualelementsandtransformations.We
foundthatvisualknowledgeis sufficient for trans-
fer, but that causalknowledgeis neededto deter-
mineif thetransferredsolutionis appropriate.

1 Intr oduction
The goal of this work is to examinethe natureandrole of
visual representationsand inferencesin analogicalreason-
ing, andespeciallyin analogicaltransfer. Analogyinvolves
learningaboutsometargetanalogby transferringknowledge
from a sourceanalog. Theprocessconsistsof several steps:
retrieval is identifying a candidatesourceanalogin mem-
ory; mappingis finding the bestsetof correspondencesbe-
tween componentsof the analogs;transfer is the applica-
tion of knowledgefrom the sourceanalogto the target ana-
log; evaluation is determiningif thetargetproblemhasbeen
solved appropriately;storage is storingthe target analogin
memoryfor potentialreuse.

Traditionalconceptualandcomputationaltheoriesof anal-
ogy have focusedprimarily on causalknowledgeandinfer-
ences(see[Holyoak andThagard,1997] [BhattaandGoel,
1997] [Falkenhaineret al., 1990] for examples).Psycholog-
ical research,however, shows thatvisualreasoningoftenoc-
cursin analogy[HolyoakandThagard,1997], [Pedoneetal.,
1999] Somerecenttheories[BhattaandGoel, 1997] [Grif-
fith et al., 2000] representstructuralknowledgein addition
to causalknowledge. Structuralknowledgedescribesa sys-
tem'sphysicalcompositionbut typically includesonly thein-
formationdirectlyrelevantfor analyzingthecausalbehaviors
of thesystem.Structuralknowledgemight be thoughtof as
aschematicthatshowsthecomponentsof thesystemandthe
connectionsamongthembut leavesout othervisualinforma-

tion suchaswhata wire looks like, which sideof a pumpis
up,etc.

We definevisualrepresentationsasthosethatconsistonly
of informationrelevant to how an imageappears.Note that
this definitionof “visual” includesboth high-level symbolic
representationsandlow-level bitmaprepresentations(which
only representthe locationsof pointsof light). We view vi-
sualandcausalknowledgeaslying ona spectrum,whereone
extremehasraw sensorydata,(suchasa bitmapimage),and
the other has highly interpretedand abstractedknowledge
(e.g., teleologicalknowledge). Visual knowledgeis closer
to theperceptual,or modal, endof thespectrum,andcausal
knowledgeis nearerto the amodalend. Causalitycanonly
be representedimplicitly in a visual representation.In con-
trastto abitmapimage,thevisualknowledgeweusecontains
abstractionsof objectsandrelations,andis thusrepresented
symbolically.

Our hypothesisis that symbolically representedvisual
knowledgeprovidesa level of abstractionatwhichtwo other-
wisedissimilardomainsmay look morealike. For example,
theconceptsof anarmyon themarchanda ray of radiation
arequitedifferent,but if botharerepresentedaslines,it may
facilitateanalogicalretrieval, mappingandtransfer. We hy-
pothesizethatevaluation,on theotherhand,requiresexplicit
causalknowledge:simply becausethepathof thearmyand
the ray look alike doesnot imply that the two behave simi-
larly. Sinceother's work hasbegun to explore theuseof vi-
sualknowledgefor mapping,ourwork focusesonanalogical
transfer.

In this paper, we sketchan outline of our computational
theoryof visualanalogicaltransferfor a classof problemsin
which the sourceanalogcontainsa sequenceof images(or
canbe analyzedin termsof an imagesequence).This the-
ory hasbeenimplementedin an operationalcomputerpro-
gramcalledGalatea.We illustratethetheoryusingtheclas-
sicalfortress/tumorproblem[Duncker, 1926] asanexample.
This examplewaschosenbecausepsychologicaldataindi-
catesthatexperimentalparticipantsusedvisual inferencesin
solvingit [HolyoakandThagard,1997]. In this task,experi-
mentalparticipantsfirst reada storyabouta problem-solving
situation: A generalwith a large army wantsto overthrow
a dictator who lives in a fortress. All roadsto the fortress
arearmedwith minesthatwill go off if many peopleareon
thematthesametime. To solvethisproblemhebreaksuphis



armyinto smallgroupsandhasthemtakedifferentroads.The
groups� arrive at the sametime and takethe fortress. Then,
the subjectsaregivena new problem: A patientneedsradi-
ationtreatmenton a tumor insidethebody, but theradiation
will harmthehealthytissueit reacheson theway in. Finally,
the participantsareaskedto solve the tumor problem. The
analogoussolutionis to target the tumorwith low-level rays
comingfrom differentdirections,andhave themconvergeon
thetumor.

2 Languageand Processing
Our first task was to designa languageto expressvisual
analogsand the mapsbetweenthem. Sincethe theoryper-
tains to sequencesof images,we neededboth a vocabulary
of primitive visual transformationsthat expresschangesbe-
tweentwo consecutive images,anda vocabularyof primitive
visualelementsthatenablethetransformations.Wedesigned
aprimitivevisualizationlanguage,calledPrivlan, whichcon-
sistsof suchprimitive visual elementsandprimitive visual
transformations. It can representdiagram-likeimagesand
changesto them. Like other computationalvisual analogy
theories,oursrepresentsimagesasnetworksof symbols. In
Privlan symbolicimagesarecalledsimages, to differentiate
themfrom bitmapimages.

Privels: Primitive Visual Elements
Eachsimageis composedof a collectionof primitive visual
elements,or privels. Table1 showsa list of someprivels.

Table1
Privel name attrib utes

generic-visual-element location,size
line start-point,end-point

thickness,location
circle location,size
box location,height,width, orientation

Objectsin thedomain,like thefortress,areassociatedwith
a privel type. Eachprivel typehasattributesassociatedwith
it. As shown in Table1, lineshaveastart-point, anend-point,
a locationanda thickness. Theseattributesarenot strongly-
typed.For example,theend-pointof a line couldbealocation
suchasthe“center” of the imageor somecomponentof the
image,like thefortress.

Privits: Primitive Visual Transformations
Privlan representschangesto imagesover time with an or-
deredseriesof simagesin differentstates.Eachsimagein the
sequenceis connectedto any simagesbeforeandafterit with
primitive visual transformations,or privits. Table 2 shows
someexamplesof privits.

Table2
Privit name arguments

move object,new-location
decompose object,number-of-resultants
put-between object,first-object,second-object

add-component object

Each privit can take arguments. Move, for example,
takessomeobject that it is moving, anda new-location. It
changesthe object's value for the location attribute to the
new-location.

For example,imaginea circle moving from the top of the
imageto thebottom.Privlanwould representthis asa series
of two simages.Thefirst simagewouldcontaina circle with
locationsetto top. Thesecondwouldbeto have anothercir-
cle (called,say, circle-1) representedwhoselocation would
besetto bottom.Privlanknowsthesetwo simagesarein ase-
riesbecausethey areconnectedwith a transform-connection,
which in turn is associatedwith a seriesof correspondences
betweenobjectsin the simages:Therewould be a mapbe-
tweenthecircle in thefirst simageandcircle-1 in thesecond.
This mapbetweenthe circleswould be associatedwith the
moveprivit.

2.1 Algorithm
Thebottomseriesof simagesin Figure2 shows a represen-
tationof thesolvedfortressproblemanalog.Thebottomleft
simageis the initial stateof the problem. The top seriesof
simagesshows the target analog,the tumor problem. The
darkly shadedbox shows theoutputof thesystem.Thefirst
simageis all thatis inputof thetumorproblem.

To make an analogical transfer, the sourceand target
analogsmusthave an analogybetweenthem. The analogy
betweenthefirst tumorproblemsimageandthefirst fortress
problemsimagespecifiesmapsbetweenthecomponents.To
avoid over-complicationof thefigure,only oneof thesemaps
is shown, thatbetweenthe left-road1andleft-body1.

Privits are transferredfrom the bottom seriesto the top:
decomposeandmove.

Following is thecontrolstructurefor ourvisualanalogical
transfertheory. Wewill describethetransferof thefirst privit
asarunningexample.Theprocessin theabstractcanbeseen
in Figure1.

1. Identify the first simagesof the target and analog
problems.

2. Identify the privits and associatedarguments in the
current simageof the source analog. This stepfinds
outhow thesourceproblemgetsfromthecurrentsimage
to thenext simage.In our example,theprivit is decom-
pose, with “four” asthenumber-of-resultantsargument
(notshown).

3. Identify the objects of the privits. The objectof the
privit is what objectthe privit actson. For the decom-
poseprivit is the soldier-path1 (the thick arrow in the
bottomleft simage.)

4. Identify the correspondingobjectsin the target ana-
log. The ray1 (the thick arrow in the top left simage)
is the correspondingcomponentof the sourceanalog's
soldier-path1, as specifiedby the analogicalmap be-
tweenthe simages(not shown). A singleobjectcanbe
mappedto any numberof other objects. If the object
in questionis mappedto morethanoneotherobject in
thetarget,thentheprivit is appliedto all of themin the
next step.If theprivit argumentsarecomponentsof the
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problem.
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sourcesimage,thentheiranalogsarefoundaswell. Else
theargumentsaretransferredliterally.

5. Apply the privit with theargumentsto the target ana-
log component.A new simageis generatedfor the tar-
get problem(top middle) to record the effects of the
privit. Thedecomposeprivit is appliedto theray1, with
the argument“four.” The resultcanbe seenin the top
middlesimagein Figure2. Thenew raysarecreatedfor
thissimage.

6. Map the original objectsto the newobjectsin the tar-
get problem. A transform-connectionandmappingare
createdbetweenthetargetproblemsimageandthenew
simage(not shown). Mapsarecreatedbetweenthecor-
respondingobjects.In thisexampleit wouldmeanamap
betweenray1 in thefirst top simageandthefour raysin
thesecondtop simage.Theprivit is associatedwith the
map,asshown in theFigure,sothetargetproblemitself
canbeusedasa possiblesourceanalogin thefuture.

7. Map the newobjectsof the target problemto the cor-
respondingobjectsin the sourceproblem. In thiscase
theraysof thesecondtargetsimagearemappedto sol-
dier pathsin the secondsourcesimage. This step is
necessaryfor the later iterations(i.e. going on to an-
othertransformationandsimage).Otherwisethesystem
wouldhave nowayof knowing whichpartsof thetarget
simagethelaterprivits wouldoperateon.

8. Check to seeif goal conditions are satisfied. If they
are,exit, and the problemis solved. If not, and there
arefurthersimagesin the sourceseries,set the current
simageequalto thenext simageandgoto step1. If there
areno furthersimages,thenexit andfail.

3 System:Galatea

Our hypothesiswas that a visual representationlanguage
would be sufficient to describedomainssuchthat analogi-
cal problemsolvingcouldtakeplace.To testthis hypothesis,
weimplementedtheabove ideasin aprogramcalledGalatea,
andappliedit to Duncker's fortress/tumoranalogy.

Galatea's knowledge representationarchitectureconsists
of two kindsof propositions:1. A statementof existenceof a
conceptor relationand2. Theconnectionof two conceptsor
propositionswith a relation.

Galateatakesas input a solved sourceproblem, an un-
solvedtargetproblem(bothrepresentedvisually),ananalog-
ical mappingsbetweenthe simages,andcriteria for an ade-
quateproblemsolution. Wheninstructedto solve the target
usingthesource,it analogicallytransfersthesolutionproce-
dure.As canbeseenin Figure2, it outputsaseriesof simages
for thetargetproblem,andchecksto seeif thesolutiontrans-
ferredindeedsolvestheproblemconstraints.The following
sectiondescribesour results.

Duncker's Fortr ess/Tumor Problem
Table3 shows someof the privelsandtheir attributevalues
for thefirst fortressproblemsimage.

Table3: Privelsfrom FortressProblemSimage1
Visual Object attrib utes value

Fortress looks-like: generic-visual-element
location: center

Bottom-road looks-like: line
start-point: bottom
end-point: fortress

Right-road looks-like: line
start-point: right
end-point: fortress

Left-road looks-like: line
start-point: left
end-point: fortress

Top-road looks-like: line
start-point: top
end-point: fortress

Soldier-path looks-like: line
location: bottom-road
thickness: thick

We representedthe fortressstorywith threesimages(see
Figure 2.) The first was a representationof the original
fortressproblem.It hadfour roads,representedasthick lines,
radiatingout from the fortress,which wasa generic-visual-
elementin the center. We representedthe original soldier
path as a thick line on the bottom road. This simagewas
connectedto the secondwith a decomposeprivit, wherethe
argumentsweresoldier-path1for theobjectand“four” for the
number-of-resultants. Thesecondsimageshows thesoldier-
path1decomposedinto four thin lines,all still on thebottom
road.Thelinesarethinnerto representsmallergroups.This
is connectedto the final simagewith the moveprivit, which
is appliedto threeof thenew soldierpaths.They aresentto
thedifferentroads.Thefinal simagein the fortressproblem
showsall four soldierpaths,eachona differentroad.

We representedthe startstateof the tumor problemas a
singlesimage.The tumor itself is representedasa generic-
visual-element. Therayof radiationis a thick line thatpasses
throughthebottombodypart.

Galateatransfersthefirst transformation(decompose) from
thesourceanalog(the solved fortressproblem)to the target
(thetumorproblem).It knowswhichpartof thetumorprob-
lemto applythis privit to from thegivenanalogicalmapping
betweenthefirst simagesof thefortressandtumorproblems.
Galateageneratesa secondsimagewith the line representing
theray decomposedinto four thinnerlines. In thenext itera-
tion Galateasuccessfullytransfersthesecondtransformation,
moving eachof theraysto thedifferentroads.

Galatea can solve analogical transfer problems using
only visual knowledge, as we have shown with the
fortress/radiationexample. Though this work is still in
progress,weconjecturethatthistheory, whenPrivlanis more
fleshedout, will apply to all problemswhosesolutioncon-
straintsinvolve visually perceivablestatesof theworld. An-
othersenseof this is: if you canmakea diagramof it, our
theoryappliesto it.



3.1 CausalKnowledge
Though the solution procedurewas transferredin both of
thesecases,the systemstill had no way of knowing if the
transferredsolutionwasadequatefor the new problem. In
the tumorproblem,in orderfor theagentto determineif the
tumorwasdestroyedandthepatientwasstill alive, it needed
somecausalknowledge. By causalwe meanknowledgeof
how thingsin asystemchangeasthey interact.Pre-andpost-
conditionsarea straightforwardway to representthis, but it
is difficult to imaginewhat“visual” pre-andpost-conditions
might look like. Visual representationsalonecannotenable
evaluationof thesolution.

Galatea representscausal knowledge with production
rules,implementedin ACT-R [AndersonandLibiere,1998].
We have no theoreticalcommitmentto productionrules or
ACT-R. Oneproductionrule identifiesa bodypartasdeadif
thereis a thick line representinga ray going throughit. An-
otherruleidentifiesthetumorbeingkilled if enoughradiation
is hitting it. If thetumoris deadandthebodyis alive,a final
productionfiresthatidentifiestheproblemasbeingsolved.

Whenthetumorproblemis first encountered(whenit only
consistsof asinglesimage),Galateais unableto infer through
theproductionsthat theproblemis solvedin theinitial state.
Whenthe solutionis transferredfrom the fortress,the rules
confirmthattheproblemhasbeensolved.

4 Discussion
In our earlierwork, we have developeda theoryof Model-
BasedAnalogybasedon Structure-Behavior-Functionmod-
elsof causalmechanismsandphysicalsystems.The IDeAL
system [Bhatta and Goel, 1997], for example, transfers
generic teleologicalmechanismsfrom a sourceanalog to
a target problem to addressnovel designproblems. The
ToRQUEsystem[Griffith etal., 2000] usesgenericstructural
transformationsto mutateatargetproblemor asourceanalog
to constructanalogies.Galateabuilds on theabove theoryof
model-basedanalogyin that in it too relieson the coreidea
of generictransformations.Thus,while the analogicalpro-
cessin Galateais similar to that in IDeAL, thecontentof its
generictransformationsis visual asopposedto teleological
or structural.ToRQUE's structuralknowledgecapturesonly
a small subsetof visual knowledge. In contrastGalateahas
informationaboutthe locationandappearanceof objectsin
a particularsimage:the fortressis not just connectedto the
road, it is in the centerof the simage;the path is not just
on the road, it is a thick line. Theseadditionalfeaturesen-
abletheinitial analogicalmappingbetweensimageswithout
causalknowledgebecausethe simagesrepresentingthe two
analogsaresimilarwhendescribedvisually.

Like Galatea,LetterSpiritis a modelof analogicaltransfer
[McGraw andHofstadter, 1993]. It takesastylizedseedletter
asinput andoutputsanentirefont thathasthesamestyle. It
doesthisby determiningwhatletteris presented,determining
how the componentsaredrawn, andthendrawing the same
componentsof otherlettersthesameway. Like Galatea,the
analogiesbetweenlettersarealreadyin thesystem:thever-
tical barpartof the letter “d” mapsto the verticalbar in the
letter “b,” for example. A mappingis createdfor the input

character. For example,theseedlettermaybeinterpretedas
an“f ” with thecross-barsuppressed.Whenthesystemmakes
a lower-case“t,” by analogy, it suppressesthecrossbar.

It is not at all clearthat LetterSpiritis applicableto other
domains(suchasthefortress/tumorproblem)in partbecause
thereis little distinctionbetweenits theory and the imple-
mentationthatworksfor letters.In contrast,onecanseehow
Galateamight be appliedto the font domain: The stylistic
guidelinesin LetterSpirit,suchas“crossbarsuppressed”are
like thevisualtransformationsin Galatea:it wouldbeatrans-
formationof removing anelementfromtheimage,wherethat
elementwasthecrossbarandthe imagewasa prototypelet-
ter “f.” Thenthetransformationcouldbeappliedto theother
lettersoneby one. We conjecturethat our theoryhasmore
generalitythanLetterSpirit.

Galateadoes not generatethe analogicalmapping, but
othersystems,thatcreatemappingswith visual information,
have shown that it canbedone.TheVAMP systemsareana-
logicalmappersaswell [Thagardet al., 1992]. VAMP.1 uses
ahierarchicallyorganizedsymbol/pixel representation.It su-
perimposestwo images,andreportswhich componentshave
overlappingpixels. VAMP.2 representedimagesas agents
with local knowledge.Mappingis doneusingACME/ARCS
[Holyoak andThagard,1997], a constraintsatisfactioncon-
nectionistnetwork.Theradiationproblemmappingwasone
of theexamplesto whichVAMP.2 wasapplied.

The StructureMappingEngine,or SME [Falkenhaineret
al., 1990] finds the bestmappingof elementsbetweentwo
domains. But SME typically is appliedto instanceswhere
thesituationsarerepresentedashaving causalandstructural
knowledge. SME hasbeenappliedto visual knowledgein
a systemcalledMAGI [Ferguson,1994], which takesvisual
representationsandusesSME to find examplesof symmetry
andrepetitionin a singleimage.

Like Galatea,MAGI and the VAMPs usevisual knowl-
edge. But unlike Galateatheir focus is on the creationof
themappingratherthanon transferof a solutionprocedure.
MAGI'sandGalatea's theoriesarecompatible:a MAGI-like
systemmightbeusedto createthemappingsthatGalateauses
to transferknowledge. The theorybehindthe VAMPs is in-
compatiblebecausethey usea differentlevel of representa-
tion for theimages.

Galateahasalsobeenappliedto the casestudyof James
ClerkMaxwell'screationof hiselectromagnetictheory. Ac-
cordingto Nersessian's Cognitive-HistoricalAnalysis[Ners-
essian,1995], Maxwell usedanalogicaltransferto resolve a
problemwith his mentalmodelof electro-magnetism.The
transferwasmediatedby a genericabstraction,and the ab-
stractionwascreated,retrieved,andinstantiatedusingvisual
representationsandreasoning.

Galateaso far hasbeensubstantiatedfor only two exam-
ples: Duncker's fortress/tumorproblemandMaxwell's case
study. In the future, we will extendGalateato cover many
moreproblems,andexpandit to use,in additionto simages,
bitmapimages,whichwebelievewill beimportantfor chang-
ing representationswhensymbolmismatchesmakeanalogi-
calmappingdifficult.



5 Conclusion

Thefirst findingof ourexperimentswith Galateais thatvisual
knowledgealone,with no explicit representationof causal
knowledge,is sufficientfor enablinganalogicaltransfer. This
validatesthe centralhypothesisof our work. Galateasug-
gestsa computationalmodelof analogybasedon dynamic
visualknowledgethatcomplementstraditionalmodelsbased
oncausalknowledge.AlthoughGalateadoesnot addressthe
issuesof retrieval andmapping,put togetherwith otherwork
describedin the previous section,we can now more confi-
dentlyconjecturethatvisualknowledgealonecanenablere-
trieval, mappingandtransferin analogy.

A secondfindingof ourwork onGalateais thatevaluation,
in general,cannotbe doneusingvisual knowledgealone;it
requirescausalknowledgetoo. Thusvisual knowledgeen-
ablesonly the stepsthat dependdirectly on the visual simi-
larity betweenthetargetproblemandthesourceanalog,e.g.,
retrieval, mappingand transfer. It doesnot, however, fully
supporttheevaluationstepbecauseit dependsnotonsimilar-
ity but on theintrinsiccausalandteleologicalstructureof the
targetproblem.

Galatearepresentsvisual knowledgesymbolically, in the
form of symbolicimagesmadeof primitive visualelements
and primitive visual transformations.The symbolic repre-
sentationprovidesthe standardbenefitsof discreteness,ab-
straction,ordering,and composition. Although sequences
of lower-level bitmaprepresentationsalsocapturethenotion
of ordering,they, by themselves,neithercaptureabstractions
thatenablenoticingvisual similarity nor enabletransforma-
tionson theimages.This leadsusto a third finding: Galatea
providesadditionalevidencethatsymbolicrepresentationsof
visualimagesarenecessaryfor analogy.
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