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Abstract 
I propose a challenge to the experience-based reasoning 
community, including analogy and case-based reasoning 
researchers, to create a general artificial intelligence 
architecture based on the principles of experience-based 
reasoning. This ambitious proposal would push the core 
ideas of the field to their limits, and if successful raise 
awareness of the field. I list some major cognitive tasks that 
such an architecture should be able to handle, and briefly 
sketch how an experience-based reasoning architecture 
might accommodate them. 

 Introduction   
 
The structure of the field of artificial intelligence (AI) is 
organized by its methodologies.  Major players include 
Bayesian reasoning, artificial neural networks, logic, and 
probability theory.  Most AI research consists of applying 
one of these methodologies to a problem, with researchers, 
sensibly, applying the most promising methodology to the 
problem in question. But there is a growing interest in 
modeling general intelligence (Voss, Goertzel, & 
Pennachin, 2006; McCarthy, Minsky, Sloman, Gong, Lau, 
Morgenstern, Meuller, Riecken, Singh, & Singh, 2002).  It 
has been argued that a diversity of methods will be 
required to achieve this (McCarthy et al., 2002).  But 
without pushing existing methods to their limits we cannot 
know exactly where each will be useful and where each 
will fail.  The policy of always applying the most 
promising method fails to demonstrate the boundaries of 
each method’s abilities.  My grand challenge is to test the 
limits of an AI methodology, experience-based reasoning 
(EBR), by pushing it outside of its comfort zone. 

                                                 
 

Artificial intelligence has seen a good deal of success 
with using EBR methods. Experiential reasoning 
(including analogical and case-based reasoning) is 
considered one of the major paradigms in the 
field.  However, there have been few efforts to use EBR to 
implement all of the major problems of AI in within a 
single architecture.   
The Grand Challenge. I propose that the EBR research 
communities create AI architectures based as much as 
possible on experience-based reasoning.  If successful, 
then the AI community will have a promising new 
architecture.  The places where the project fails will show 
the limitations of experience-based reasoning with a 
greater specificity than has yet been achieved. In either 
case, we contribute to the goal of designing artificial 
general intelligence. 

In order to specify the goals of this project, it is 
important to describe the list of the things that a general AI 
architecture should be able to do. Chapter headings from 
some AI textbooks include methods such as search, genetic 
algorithms, logic, and neural networks. Since these are 
methodologies competing with EBR, it is unreasonable to 
ask that an architecture be able to do them.  Indeed, the 
Soar architecture (Laird, Rosenbloom, and Newell, 1987) 
primarily uses a production system methodology. Instead, 
these are methodologies that implement cognitive tasks 
that intelligent creatures can do. We should look to an AI 
architecture to implement these higher-level tasks, such as 
classification, perception, problem solving, reasoning, and 
natural language understanding.  For example, heuristic 
search can be used to implement problem-solving, so an 
architecture based on EBR should be able to implement 
problem-solving as well, but with its unique approach. 

There is no agreed-upon exhaustive list of cognitive 
tasks, but most lists would contain some versions of the 
following items:  attention, theory creation, conceptual 



change, inference and reasoning, categorization and 
classification, decision making, emotional response, 
hypothetical thinking, language processing, memory 
retrieval and storage, problem-solving and planning, 
perception, and learning.  

In this paper I will sample some of these cognitive tasks, 
and describe sketches of how they could be implemented 
with an EBR approach.  

 
Experience-based reasoning.  The goal of an EBR 

architecture is to use analogy and case-based reasoning 
methods to implement the major tasks involved in 
intelligent thought.  In this section I will review what EBR 
methods are, in the broadest sense. 

The core idea is to apply knowledge from past 
experience to inform new experience.  Researchers have 
identified several steps that are typically involved (Leake, 
1999), although there is not universal agreement on what 
the steps are, nor how many there are. Not all of these sub-
processes will prove necessary for the implementation of a 
general AI architecture.  In the next section I describe how 
the tasks might be implemented, and will refer to these 
steps. 

The first step is situation assessment, which is preparing 
the current experience so that it works with the indexing 
scheme used for the past experiences.  This facilitates 
retrieval of appropriate experiences. 

The second step is retrieval, which is the choosing from 
memory which experiences to consider and use for 
reasoning.  The selected experience is referred to in the 
case-based reasoning (CBR) and analogy literature as the 
“source” or “base.” 

The mapping step is the selection of correspondences 
between the elements of the source and the current 
situation (the target).  For example, in an analogy between 
a car and a horse, the wheels of the car might map to the 
legs of the horse.  

Similarity assessment is determining the relevant 
similarities and differences between the source and 
target.  When referring to a man as a bear, we know to 
infer that the individual in question is big, and also know to 
not infer that he slaps salmon out of rivers. 

Transfer and adaptation is the process of applying the 
knowledge of the source to the target (transfer), which 
might involve changing the nature of the knowledge 
(adaptation).   

Evaluation is the determination of how well the 
transferred knowledge applies to the target. If the 
transferred knowledge is a solution to a problem, the 
evaluation determines if the solution is adequate. 

Finally, storage is the process of encoding the new, 
completed experience in memory so it can be used as a 
source by reasoning processes. 

EBR uses past experiences to guide actions in new ones. 
When a reasoner is first starting out, with no experiences in 

memory, there is nothing to retrieve.  We can call this the 
boostrapping problem.   

In general this can be overcome in two ways.  First, the 
reasoner can act randomly, and remember the resulting 
experience in terms of the extent to which the reasoner’s 
goals were achieved.  These random acts and consequences 
form the initial memories that EBR uses.  This is a kind of 
learning by doing.  For many low-level AI tasks, I will 
suggest some version of this “random acts” boostrapping 
method.    

Alternately, a reasoner can hear about or observe other 
agents acting (this is not only a bootstrapping process, but 
also another means to obtain memories in a working 
system). In many CBR systems, the initial cases are 
provided by the user from some database, perhaps created 
by knowledge engineers. In this context I classify this 
ability to obtain virtual experiences as “learning by 
observation” rather than learning by doing. 

Now I will describe several core cognitive tasks, and 
sketch how an EBR system might implement them. 
 

How EBR Could Implement Several Core 
Cognitive Tasks  

 
There are some areas of cognition that have received a 

good deal of attention in the EBR literature, so I will not 
elaborate on them here, such as planning (Veloso & 
Carbonell, 1993; Hammond, 1989), language processing 
(Burke, 1998)1 and problem solving, which is so common 
in CBR research that it a part of CBR’s very definition.2

Attention. Attention is the process a reasoner uses to 
decide which internal representations or aspects of the 
environment to concentrate on.  In this paper 
“concentrating on” something means to spend resources 
processing it.  The EBR architecture will handle attention 
shifts from one thing to another based on analogies with 
previous attentional shifts. The process will be 
bootstrapped with random shifts of attention.  As the 
reasoner is rewarded and punished for effective and 
ineffective attention shift decisions, those shifts are stored 
as cases to be retrieved and applied to new situations.  

 

As the reasoner learns abstract symbols, it will be able to 
transfer attentional shifts from one thing to another based 
on more abstract similarities between cases. 

To make this more concrete, I will focus on the shifting 
of visual attention.   Visual attentional shifts take two 
forms: motion of the eyes, in which the reasoner moves the 
eye or sensor to be pointed at what they want to process, 
and motion of the “attentional window” (Kosslyn, 1994) in 

                                                 
1 For a bibliography see 
http://www.lrdc.pitt.edu/Ashley/TCBR_BIB.html 
2 http://en.wikipedia.org/wiki/Case-based_reasoning  
retrieved March 13, 2009 from the Wikipedia. 
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which the reasoner makes changes in what part of the input 
is to be processed.  That means that while the eyes (or 
cameras) remain steady, the reasoner can attend to different 
parts of the visual signal.  What gets transferred are 
eye/camera movements as well as attentional window 
movements associated with memories similar to the current 
sensory state. 

These shifts get associated with success or failure 
depending on feedback regarding what should have been 
attended to. For example, if the reasoner finds out later that 
there was something important that should have been 
attended to, the architecture can punish the attentional shift 
that was used as a source, making it less likely to be 
retrieved in the future.  
Decision Making. Previous decision-making episodes can 
be used to inform new decisions. Similarly to the 
categorization example below, the decision-making 
strategies can be encoded in the cases. Since the term 
“decision-making” can potentially apply to many other 
psychological processes (such as classification and 
planning), I will restrict the meaning in this paper to the 
selection of a course of action. When viewed this way, it is 
easy to conceive of cases in which there is a situation 
description and an action taken, rather like a production 
rule. In addition to the methods in the CBR literature, the 
cognitive modeling architecture ACT-R (Anderson & 
Lebiere, 1998) has a means for selecting productions based 
on success rates. Once selected, CBR methods can be used 
to transfer and adapt the cases to the new situation.   
Theory and Explanation Generation. This includes both 
scientific and more everyday generation of explanations. 
 Theory creation is a complex process with many subtasks. 
I will address a few of them. 

Often the creation of a new theory involves the creation 
of a mental model of some system in the world to serve as 
an explanation.  To do this with EBR, the reasoner would 
transfer a mental model of how something works from 
memory to the novel target phenomenon to be understood. 
For example, a reasoner might try to understand how a film 
set functions based on its experience with a theater 
company.  

A good deal of work has been done in this area already. 
Model creation has been explored in Davies, Nersessian, & 
Goel (2001) for the case of James Clerk Maxwell's creation 
of the theory of electromagnetism, based on an analogy 
with gear systems.  

Sometimes a new situation requiring explanation will 
have similarities to other situations in memory that have 
explanations associated with them. Those similar cases are 
retrieved, and the explanations transferred to the target 
situation. For example, if a reasoner observes violence, the 
reasoner can transfer an explanation of why (e.g., anger on 
the part of the one engaging in the violence) from a 
previous experience. The Interactive KRITIK system (Goel, 
Gomez de Silva Garza, Grue, Murdock, & Recker, 1997) 
and PHINEAS (Falkenhainer, 1990) generated explanations 

using EBR for physical devices, and the SWALE system 
(Leake, 1992) provided creative explanations for 
anomalous situations, and (HaCohen-Kerner, 1995) built a 
system for finding explanations in Chess.  

The creation of equations is particularly important for 
scientific theory creation. When a theory is turning from a 
mental model into an equation, analogy can help determine 
the parts of the equation. For example, if a number has to 
be positive, there could be cases in the reasoner's mind in 
which a value is squared, which always results in a positive 
number. This could be transferred to the target situation. 
Memory. The cognitive tasks involving memory are 
regarded as some of the most fundamental in cognitive 
psychology. Memories are stored, transferred to long-term 
memory from the various short-term memories, altered, 
and retrieved.  

Case-based reasoning already has theories of memory, in 
its own way: memories are cases, indexed so that they can 
be found efficiently and effectively (e.g., Kolodner, 1983; 
Hammond, 1989; Birnbaum, 1985; Schank, 1999). This 
has proven effective for the AI community, and might be 
enough for an AI architecture. If EBR is to be a contender 
as a cognitive architecture, however, the theory is not at the 
level that most psychologists tend to be interested in. 
Rather than focusing on the use and structure of complex 
memories, psychologists tend to focus on things such as 
memorization, the relation of memory to attention, 
forgetting, and the different kinds of memory storage (e.g., 
working, long-term, the visuo-spatial sketchpad, etc.). 
Their data are based on millisecond response times and 
accuracy measures, rather than broad questions of 
knowledge transfer that CBR is typically concerned with. 
So what would an EBR theory of memory look like at this 
lower-level? 

I will discuss one of the many memory-related tasks: 
memory retrieval. There is wide agreement that memory 
retrieval occurs based on some notion of semantic 
similarity and something approximating spreading 
activation. The process could bootstrap by retrieving based 
on random features of the query stimuli. If appropriate 
memories are returned, then that method is more likely to 
be used when future memory-retrieval episodes occur. For 
example, if one sees a bear on a sunny day, retrieving other 
memories of sunny days will prove less useful than 
retrieving other instances of seeing bears. What the 
reasoner would be doing is retrieval and adaptation of past 
memory retrievals to inform new ones.  

There are many ways that spreading activation can 
occur, and many decisions a modeler must make when 
implementing it. For example, what is the multiplier used 
when one activated node spreads to an adjacent? Are 
certain kinds of edges in the network more likely to spread 
in certain conditions? All of these decisions could be tried, 
stored as cases, and retrieved with an EBR system trying to 
spread activation.  



EBR theory was not intended to model behavior at this 
low of a level. Perhaps using EBR to determine the details 
of spreading activation is pushing the idea too far. We 
won’t know for sure until we try. 
Conceptual Change. We can imagine two parts of 
conceptual change: the creation of a new conception, and 
the transfer of preference from the old to the new 
conception. While the reasoner holds the previous 
conception, a new conception is being learned (or created) 
and slowly understood. At some point the new conception 
might be judged as more sensible than the old, and a 
conceptual change occurs, transferring preference from the 
old to the new. Even when conceptual change occurs, the 
old theory is still more or less intact in the reasoner's mind. 

The learning of a new conception involves 
understanding a mental model that someone else has 
already figured out for themselves. It is trying to 
understand someone else's communicated mental model 
(Norman, 1983). To some extent, when we learn 
something complicated we must reinvent it for ourselves. 
To this extent the process is identical to that described in 
the theory generation section. The rest is creating a mental 
model out of the communicated symbol structures. When 
told that, for example, an electron is like a planet in a solar 
system, the properties of the solar system are transferred to 
the electron target (Gentner & Schumacher, 1986). 

The transfer of acceptance from the old to the new 
conception can be viewed as a decision-making task as 
described above. The reasoner evaluates the two choices: 
to transfer acceptance now, or not. As described in the 
decision making section, the decision is made based on the 
results of similarly-made decisions in memory. In this case, 
the important aspects of the predicted outcomes are used as 
queries into memory. Previously made decisions are 
retrieved, and, based on how they turned out, one is 
selected to be used to determine the outcome of this 
decision. 
Inference and Reasoning. Many case-based reasoning 
systems do some kind of inference in the form of 
knowledge transfer. However more classical forms of 
reasoning strategies can also be implemented. Reasoners 
experience cases of others' reasoning, through reading and 
listening. Also, they can create their own reasoning 
methods, with varying degrees of success. Individual 
reasoning cases (I'll call them “arguments”) are retrieved, 
modified, and re-used.  

For example, a reasoner might hear an example of 
Modus Ponens: “If I have the money I will buy an ice 
cream. I have the money, so I'm going to buy an ice 
cream.” One of the various means discovered to abstract 
cases might generate an abstract case resembling “if P then 
Q, P, therefore Q.” Then, when encountering a new case of 
the form “if P then Q, P” the reasoner can retrieve and use 
the previous case to conclude Q. Other argument forms can 
also be implemented in this way. 

Categorization and Classification. In this paper I will 
refer to “classification” as the placement of something into 
a category, and “categorization” as the creation of 
categories.  

A memory of classification events can be built up 
through observation of others' and one's own experiences. 
For example, a reasoner might observe someone classify a 
brown, furry, barking thing as a dog. Alternatively, a 
reasoner might (randomly or through CBR) classify a cow 
as a dog. Subsequent action or inference can provide the 
feedback for these cases. When a child mis-classifies a cow 
as “doggie,” an adult might correct her, making that 
particular case of classification less likely to be retrieved in 
the future.  

Categorization is more complicated. How can a reasoner 
use previous examples of creating categories to inform the 
creation of new ones? Categories are useful in that through 
classification we can predict unobserved properties and 
attribute values. Certain computational processes such as 
factor analysis and principle components analysis find 
categories automatically according to correlation of 
attribute values. It is tempting to make such a classification 
strategy “innate” to the architecture, rather than having it 
learned, but if we're pushing experience-based reasoning to 
its limits we need to try to make the strategy of “using 
correlation as a basis for categorization” a part of cases that 
can be retrieved.  

There are other ways to categorize. For example, when 
people freely sort novel stimuli into categories of their own 
choosing, they often select a single attribute (or dimension) 
and sort according to the values (this is called a 1D sort in 
the psychology literature. See Ahn & Medin, 1992). This is 
a robust finding and it has proven rather difficult to show 
that people attend to correlational structure at all in 
category creation (Billman & Davies, 2005).  

These are two of the potentially many strategies that 
could be used to create categories. The success of the 
inferences made as a result of these strategies would 
provide the reasoner's feedback. Then, when encountering 
a new situation where category creation is required, cases 
of the uses of different strategies can be evaluated and 
retrieved. 
Emotional Response. Similarly to decision making, 
emotional responses can be viewed as actions in response 
to certain stimuli. Since emotions tend to ready other 
processes for action, these "emotional productions" could 
be evaluated as decisions as well.  

Right now the modeling of emotions is more important 
for cognitive models of humans than for general AI 
architectures. In human psychology, emotions are 
evolutionarily old and most of them are run in the System 
1 part of the brain (contextual, innate, fast, modular, etc., 
see Stanovich & West, 2003), and we might not want to 
claim that System 1 works by experience-based reasoning. 



Nevertheless, representing emotional response this way 
might be a useful AI strategy.  

Conclusion 
The idea of EBR as the basis of cognition is not new. 
Hofstadter (2001) suggested that analogy is the core of 
cognition. However his paper focuses on high-level 
cognition, to which analogy has traditionally been 
successfully applied. I am suggesting taking on the 
difficult task of modeling lower-level cognitive tasks, the 
architecture-level tasks, with EBR as well.  

Forbus and Gentner (1997) have suggested that the 
breadth of human commonsense reasoning and learning 
takes the form of analogical reasoning and learning from 
experience. The Companion Cognitive System project 
(Forbus & Hinrichs, 2004; Forbus, Klenk, & Hinrichs, 
2008) is also working with the hypothesis that most 
learning and reasoning can be handled with analogical 
reasoning. I applaud their efforts; theirs is the most 
sophisticated EBR architecture in existence.  

However even the Companion architecture breaks from 
EBR for some tasks, such as logical reasoning. Their 
papers do not describe exactly why EBR cannot be used 
for logical reasoning. If it cannot, this should be expressed 
as an explicit AI finding. Architectures such as the 
Companion architecture could produce findings about 
newly-found limits and capabilities of EBR in the context 
of a general intelligence.  

Nobody has yet tried to consistently apply EBR to 
cognition at lower levels, and few have even tried to apply 
it consistently at higher levels, that is, with the same 
analogical or case-based mechanism.  Attempting to do 
this is important for two reasons, the first scientific and the 
second practical. First, though EBR has been shown to be 
important in many areas, its usefulness has not been 
systematically pushed to the breaking point. There might 
be task-related breaking points, by which I mean there 
might be classes of tasks it cannot account for, such as, 
perhaps, memory retrieval. There also might be level-
related breaking points. For example, when EBR is the 
basis of memory retrieval, it might break down.  

Second, such architectures have the potential to raise 
EBR’s profile. Most of cognitive psychology is the study 
of low-level tasks like memory and attention. EBR as a 
mechanism will not interest most cognitive psychologists 
unless it addresses the phenomena they find important. 
Indeed, even in case-based reasoning’s home sub-
discipline of artificial intelligence it receives little 
attention. Some contemporary AI textbooks mention it 
only in passing.3

                                                 
3 Russel and Norvig, who wrote the currently most popular 
AI textbook (2003), mention it on a single page (708) in a 

 

Experience-based reasoning has the potential to be the 
basis of general artificial intelligence architectures. 
Creating such architectures will force us to attempt to 
model cognitive tasks not traditionally implemented with 
EBR. These efforts will prove to be valuable contributions 
to AI, whether EBR succeeds or not. Given the growing 
interest in artificial general intelligence, the exploration of 
experience-based AI architectures is our grandest 
challenge.    
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