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Psychological evidence suggests that humans use visual knowledge and reasoning in
solving complex problems. We present Covlan, a visual knowledge representation language
for representing visual knowledge and supporting visual reasoning. We describe Galatea, a
computer program that uses Covlan for analogical transfer of problem-solving procedures
from known analogs to new problems. We present the use of Galatea to model analogical
visual problem solving by four human experimental participants, and describe one of the
four cases in detail. The Galatea model of human problem solving suggests that problem-
solving procedures can be effectively represented with Covlan.

1. Introduction

Some domains are intrinsically visual, that is, the objects and relations in these domains
are fundamentally visual in nature, e.g., the domains of animal shapes and human faces.
Other domains appear to be multi-modal in that much of the knowledge of the objects,
relations and processes in the domain can be represented both visually and non-visually.
For example, knowledge of an effective connection between a battery an a wire might
be represented, among other ways, functionally (a specification that the battery needs
to be physically touching the metal of the wire to conduct electricity) or visually (the
image of the wire is spatially adjacent to the image of the battery.) Even though other
kinds of knowledge and representations might be used to reason about these domains, hu-
man experimental participants report experiencing visual imagery when solving problems
about them (9; 2; 15), indicating that visual knowledge and representation often plays an
important role in human problem solving. There is also documentary evidence for visual
reasoning in scientific problem solving, e.g. (16). Further, psychological evidence suggests
that analogical problem solving is facilitated by animations (17), diagrams (1) as well as
visually evocative phrases in stimuli (12). These results suggest that not only that visual
knowledge and reasoning have an important function in human cognition, but also that
complex problem solving might be usefully represented in a visual language.

Covlan is a visual knowledge representation language for symbolic representation of
visual knowledge in complex problem solving, including problem-solving procedures. By
procedures we mean solutions to problems that involve multiple sequential actions. A
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cooking recipe is a good example of a procedure because it consists of many steps that
must be taken in a particular order. Our hypothesis is that Covlan enables representation
of problem-solving procedures that is useful for analogical transfer of a procedure from a
known analog to a new target problem.

Galatea is a computer program that uses known problem-solving procedures repre-
sented in Covlan to infer problem-solving solutions to new target problems (5). To sup-
port Galatea as a model of human visual problem-solving, we modeled four experimental
participants who solved a visual analogy problem, one of whom is described in detail
below.

2. Covlan

Covlan has been designed to describe human mental representations of visual and spatial
properties of objects, relations and procedures with high-level, abstract symbols. It is a
visual language because it represents visual and spatial information (only).

In Covlan all knowledge is represented as propositions relating two elements with a re-
lation. There are several kinds of elements: primitive objects, primitive relations, general
visual concepts, knowledge states, primitive transformations between knowledge states,
and correspondence and transform relations among knowledge states. We call the knowl-
edge states symbolic images, or s-images, which contain visual elements, general

visual concepts, and relations between them. Procedures are represented by a series
of s-images, connected with transformations.
Transformations, like computer program functions, take arguments to specify their be-

havior. These transformations control normal graphics transformations such as transla-
tion (move-to-location), and rotation (rotate). In addition there are transformations
for adding and removing elements from the s-image (add-element, remove-element).
Primitive Elements are the visual objects. The element types are rectangle, circle,

arrow, line, and curve. Each element is represented as a frame (in the artificial intelli-
gence sense) with attribute slots, such as location, size, orientation, or thickness.
A particular example of an element is referred to as an element instance.
Primitive Visual Relations are a class of symbols that describe how certain visual

elements relate to each other and to the values taken by general visual concepts. The
visual relations are touching, above-below, and right-of-left-of.
General Visual Concepts act as slot values for the primitive elements as well as argu-

ments for the visual transformations. The concepts are location, size, thickness,

speed, direction, length, distance, angle, and direction. Each concept has sev-
eral values it can take. For example, the size can be small, medium, or large, and
thickness can be thin, thick or very-thick. Location specifies an absolute quali-
tative location in ans-image (bottom, top, center, etc.)
Correspondence and Transform Representations. The knowledge of which objects

in one s-image correspond to which objects in another is a mapping, which consists of a set
of alignments between objects. Different sets of alignments compose different mappings.
The ith s-image in the source and the ith s-image in the target have a correspondence

between them; each correspondence can have any number of mappings associated with it
(determining which mapping is the best is the “mapping problem.”) The correspondence
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Table 1
Covlan’s primitive elements.

Primitive Element name attributes

connection subject, object, angle, distance
rectangle location, size, height, width, orientation

circle location, size, height
line location, length, end-point1, end-point2, thickness
set location, orientation, front, middle

curve location, start-point, mid-point, end-point, thickness

and mapping between the initial s-images (i=1) in the source and target is given as part of
the input to Galatea; the system generates the subsequent correspondences and mappings
for the subsequent s-images.

Similarly, successive s-images in a series have transform-connections between them.
These are needed so that Galatea can track how visual elements in a previous knowledge
state change in the next.

2.1. Primitive Visual Elements
Covlan’s ontology of primitive visual elements (Table 1) contains: connection,

rectangle, circle, line, set and curve.
Symbols are connected to an element type with a relation called looks-like-relation.

These symbols are instances of that element. The elements are frame-like structures
with slots that can hold values. For example, a rectangle has a location, size,

height, width, and orientation. All elements can have a location, which holds a
value representing an absolute location on an s-image (e.g. top, right).

The set is a special element. A set can contain any number of instances of elements.
These instances are connected with relationships to the set with the in-set relation.
Sets also have an orientation, the value of which is one of the primitive directions.

An element instance in the set is specified in the representation as the front, and
another as the middle. The orientation is defined as an imaginary line from the middle

to the front in the direction specified in the orientation.
Sometimes a part of an element instance must be referenced. For example, if a line

touches the middle of another line, there must be some way to describe the end of the
first line and the middle of the next. In Covlan different primitive elements have different
kinds of areas.
Lines have start and end points, as well as right and left-side mid-points. The

element instance’s names are related to the symbols naming these areas (e.g. line1-end-point
with area-relations: has-end-point, has-start-point, has-rightsidemiddle, and
has-leftsidemiddle.
Circles, squares, and rectangles have sides, which are related to element instances

with the following relations: has-side1 (the top), has-side2 (the right side), has-side3
(the bottom), and has-side4 (the left side).
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Many spatial relationships between primitive elements are represented with connections.
A connection is a primitive element with a name. Connections are frames with two four
slots: subject, object, angle and distance, represented with is-subject-for-connection,
is-object-for-connection, has-angle and has-distance. These relations connect the
connection name to distances and angles, which are qualitative miscellaneous slot

values. The object of the connection is distance away from the subject in the direc-
tion of angle.

The distances are touching-distance, short-distance and long-distance. The
angles are perpendicular-angle (straight ahead), right-angle-cw (a right angle in the
clockwise direction, or to the right), 45-angle-cw (a forty-five degree angle to the right),
45-angle-ccw (a forty-five degree angle in the counter-clockwise direction, or to the left),
and right-angle-ccw (a right angle to the left). Figure 1 shows the different kinds
of connections Covlan can represent. Areas of element instances, as well as element
instances themselves, can be connected.

touching−distance

short−distance

short−distance

long−distance

long−distance

right−angle−cwright−angle−ccw

45−angle−ccw

perpendicular−angle

45−angle−cw

Figure 1. Each of the fifteen black dots in the Figure represents a qualitative connection
area, with an angle and direction.

2.2. Miscellaneous Slot Values
Miscellaneous slot values are symbols that can give a value to element attributes

or transformation arguments. See Table 2. They can be broken down into the following
types: angles, locations1, sizes, thicknesses, numbers, directions, and lengths.

1Relative locations, as opposed to absolute locations, are classified under primitive visual relations.



The Cognitive Visual Language 5

Table 2
Classifications of Miscellaneous Slot Values.

angles perpendicular-angle, right-angle-cw,
45-angle-cw, 45-angle-ccw,
right-angle-ccw

locations bottom, top, right, center, off-bottom
off-top, off-right, off-left

sizes small, medium, large
thicknesses thin, thick, very-thick
directions left, right, up, down

lengths short, medium, long

Table 3
Visual Relations.

Visual Relations touching, above-below, right-of-left-of, in-front-of-behind

2.3. Primitive Visual Relations
The class of primitive visual relations (shown in Table 3) describe how certain

visual elements relate to each other and miscellaneous slot values.

2.4. Analogy Representations
Covlan has representations for reasoning about analogies. S-images can have analogies

between them. Each analogy can have any number of analogical mappings associated with
it (determining which mapping is the best is the mapping problem.) Each alignment be-
tween two element instances or areas in a given mapping is called a map.

Similarly s-images next to each other in sequences have transform-connections.

These are necessary so the agent can track how visual elements in a previous s-image
change in the next. A difference between analogies and transform-connections are
that there can be multiple analogical mappings for an analogy, but only one mapping for
a transform-connection. Mappings between sequential s-images are called horizontal

mappings. Analogical mappings, between source and target s-images are vertial mappings.

Transformations are attached, in fact, to a map between two elements in sequential
s-images. So if a rectangle changes into a circle, the agent knows which rectangle

in the previous s-image turns into which circle in the next s-image.

2.5. Transformations

Table 4 shows Covlan’s ontology of transformations. All are implemented to work with
Galatea.
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Table 4
Covlan’s transformations.

Transformations
Transformation name arguments

add-element object-type, location (optional)
add-connections connection/connection-set

decompose object, number-of-resultants, type
move-to-location object, new-location

move-to-set object, object2
put-between object, object2, object3

replicate object, number-of-resultants

Add-element adds a new primitive element in the next s-image. The ontology of
primitive visual elements are described in the next subsection. The first argument,
object-type, must be one of the members of the primitive elements (e.g. square

or circle). It determines what kind of shape appears in the next s-image. The sec-
ond argument is location, which must be one of Covlan’s locations: bottom, top,
right, left, and center. What this means is that the next s-image will have three
relationships added: 1) The s-image connected with a has-component relation to the
name identifying the new component, 2) the new component’s name with a looks-like

relation to the object-type, and 3) the component’s name with a has-location relation
to the location. See Figure 2. Add-element is used in the Maxwell example, and will
be described in more detail in a later section.

looks−like

SIMAGE−2

has−component

has−location TOPCIRCLE NEW−OBJECT−4123

Figure 2. A graphical representation of the three relationships added by the add-element
transformation. Relations are boxed. Objects at the beginning of arrows are in the
ThingX slot; the objects at the end of the arrows are in the ThingY slot.

Add-connections is a transformation that inserts a set of connections into the next
s-image. Input is the name of the set of connections in the source. To determine the
nature of the connections in the target, Galatea uses substitution for all the symbols to
find the analogous names, so that analogous connections are placed in the next target
s-image.
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Decompose takes a primitive element and replaces it in the next s-image with some n

number of elements. It also reduces thickness for each of those elements.
Move-to-location changes the location of an element instance from one location to

another. This means that in the next s-image, the old has-location relation is removed
and a new has-location relation is added, relating the element to the input location,
which can be an absolute location or another element.
Move-to-set takes in two sets as input (we will call them set-a and set-b). The members

of set-a are moved to the locations of the members of set-b. If set-a and set-b have the
same number of element instances, then each element of set-a is placed at the location of
a distinct element in set-b. The element instance matching is arbitrary.

If set-a has more elements, then multiple members of set-a are placed at the locations
of each member of set-b. The number of element instances in these groups is determined
by the number of elements in set-b divided by the number of elements in set-a.

If set-b has more elements, then elements of set-a are distributed evenly across the
locations of the members of set-b.
Put-between takes two objects that are assumed to be touching, and places some third

object in between them. In the new s-image 1) the two objects are no longer touching
and 2) the third is touching both of them.
Replicate takes in an element or set of elements and generates n new instances of that

element or elements in the next s-image. Its behavior is similar to decompose, except
that it does not change the size or thickness of elements, and can work on sets as well as
single element instances.

3. Galatea

Analogy involves several steps: A reasoner starts with a target, and retrieves a similar
source (or base) analog. Then the elements of the source analog are mapped to the
elements of the target problem. This means finding alignments between the sub-parts of
the two analogs (the source and the target). Next the source’s procedure is transferred to
the target, perhaps with some adaptation. Then the procedure is evaluated and finally
stored in memory. Galatea models only the transfer stage of analogy.

Galatea takes as input 1) a source series of s-images connected with transformations,
2) a single s-image representing the target problem, and 3) a mapping between the target
and the first s-image of the source. As output, Galatea produces a series of s-images,
connected with transformations, starting from the input target. These are the steps to
the solution of the problem. Each output target s-image is connected to its corresponding
source s-image with an analogical mapping. The input s-images are created by hand,
using Covlan to represent the systems described in an psychology experiment.

Dr. David Craig ran 34 participants in an analogical transfer experiment (3). Partici-
pants were shown a problem-solving solution with a laboratory, presented with text and
a diagram. They were asked to solve an analogous problem with a weed-trimmer, pre-
sented with text only. Of these, 17 participants (in three conditions) correctly described
the analogous solution. All participants were asked to draw a diagram to illustrate their
suggested solutions. A laboratory clean room strategy is transferred by adding redundant
doors to a weed-trimmer arm so that it can pass through street signs. The analogous
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solution is to design an arm with two latching doors, so that while one is open to let the
sign pass, the other stays closed to support the arm and trimmer. Participants produced
diagrams describing their solutions to the problems.

3.1. Algorithm
Following is the control structure for Galatea’s transfer of procedures from a source case

to the target. Figure 5 shows the s-image structure for L14, the participant on which
we will use as a running example in this paper. We modeled L14 and three other of the
experimental participants in Galatea. We will describe in detail our model of one of these
participants, L14, in this paper, and briefly describe the results of modeling the other
three. We use our ability to model these participant data as an evaluation of Covlan and
Galatea as a cognitive theory.

The procedure (for the source, and then for the target) is that the doorway mechanism
gets replicated, and then moved to the correct positions. Two walls are created to
complete the vestibule, and finally they are placed in the correct position so that the
vestibule is complete.

1. Identify the first s-images of the target and source cases. These are the current
source and target s-images.

2. Identify the transformations and associated arguments in the current s-image

of the source case. This step finds out how the source case gets from the current
s-image to the next s-image. The model of L14 involves five transformations (see
Figure 5). The first transformation is replicate. The secondtransformation is
add-connections which places the door sets in the correct position in relation to the
top and bottom walls. The third and fourth transformations are add-component,
which adds the top and bottom containment walls. The fifth transformation,
another add-connections, places these containment walls in the correct positions
in relation to the door sets and the top and bottom walls.

3. Identify the objects of the transformations. The object of the transformation is
what object the transformation acts upon. For L14’s first transformation, this
object is the parts of the door in the first s-image (we’ll call it door-set-l14s1).

4. Identify the corresponding objects in the target. In the target, the trimmer arm’s
door mechanism is the corresponding object.

5. Apply the transformation with the arguments to the target component. A new
s-image is generated for the target to record the effects of the transformation.
Replicate takes two arguments: some object and some number-of-resultants.
In this case the object is door-set-b1s1 (b1s1 means “base one, s-image two”)
and the number-of-arguments is two. The replicate is applied to the first L14
s-image, with the appropriate adaptation to the arguments: The mapping between
the first source and target s-images indicates that the door-set-b1s1 maps to the
door-set-l14s1, so the former is used for the target’s object argument. The num-
ber two is a literal, so it is transferred directly. Galatea generates door-set1-l14s2
and door-set2-l14s2 in the next s-image.
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The second transformation is add-connections. The effect of this transformation
is to place the replicated door-sets in the correct spatial relationships with the
other element instances. It takes connection-sets-set-b1s3 as the
connection/connection-set argument. This is a set containing four connections.
Galatea uses a function to recursively retrieve all connection and set proposition
members of this set. These propositions are put through a function which creates
new propositions for the target. Each proposition’s relation and literals are kept
the same. The element instance names are changed to newly-generated analogous
names. For example, door1-endpoint-b1s3 turns into door1-endpoint-l14s3.

Then, similarly to the replicate function, horizontal target maps are generated,
and the other propositions from the previous s-image are instantiated in the new
s-image.

The inputs to this transformation are nothing (a literal denoting that there is
not any thing in the previous s-image that is being modified), the connection set

connection-sets-set-b1s3, the source s-image lab-base1-simage2, the current
and next target s-images l14-simage2 and l14-simage3, the mapping

l14-simage2--l14-simage3-mapping1, and the rest of the memory.

6. Map the original objects to the new objects in the target case. A transform-connection

and mapping are created between the target s-image and the new s-image (not
shown). Maps are created between the corresponding objects. In this example it
would mean a map between door-sets, as well as their component objects. Galatea
does not solve the mapping problem, but a mapping from the correspondences of
the first s-image enables Galatea to automatically generate the mappings for the
subsequent s-images.

7. Map the new objects of the target case to the corresponding objects in the source
case. Here the parts of the door set in the target s-image are mapped to the parts in
the second source s-image. This step is necessary for the later iterations (i.e. going
on to another transformation and s-image). Otherwise the reasoner would have
no way of knowing which parts of the target s-image the later transformations

would operate on.

8. Determine if goal conditions are satisfied. If they are, exit, and the procedure is
transferred. If not, and there are further s-images in the source case, set the current
s-image equal to the next s-image and go to step 1.

4. The Galatea Model of L14

The participants created solutions based on an analogy with a given stimulus. The
drawings generated differed from the stimulus drawing in various ways. We chose to
describe L14 in detail because it appeared to be the most difficult in that the drawing
L14 created exhibited, among the drawings, the greatest number of differences. The
stimulus L14 saw is reproduced in Figure 3.

Participants were divided into four experimental groups, each receiving the same text
but a slightly different stimulus drawing. Figure 3 shows the condition that participant
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L14 received. Figure 4 shows what L14 wrote on his or her data sheet during the experi-
ment.

We represented the source analog as a series of s-images connected with transformations.
See the top of Figure 5 for an abstract diagram of the source analog, and see Figure 6 for
a diagram of some of the propositions in its first s-image.

Figure 3. Condition 1: Plan view of lab, with the vestibule centered.

The model of L14 involves five transformations (See Figure 5). The first transformation
is replicate. It takes in the door-set-l14s1 as an argument, generating door-set1-l14s2
and door-set2-l14s2 in the next s-image.

The second transformation is add-connections which places the door sets in the
correct position in relation to the top and bottom walls.

The third and fourth transformations are add-component, which add the top and
bottom containment walls.
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Figure 4. The source data for L14. The drawing above and handwritten text are what
participant L14 produced on the experiment sheet.

Figure 5. The implementation of L14. The top series of s-images represents the source
analog (the lab problem) and the bottom series the target. There are six s-images for
the five transformations.
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connection1

door−wall−startpointbottom−wall−startpoint door−wall−endpoint

line

door−walldoor

touching−distance

connection2

perpendicular−angle

in−front−of−
behind

in−set

top−wall

rectangle

looks−like looks−like

top−wall−endpoint

door−set

has−endpoint

has−distancehas−angle

is−object−for−
connection

is−object−for−
connection connection

is−subject−for−
connection

is−subject−for−

has−startpointhas−endpointhas−startpoint

lab−base1−s−image1

contains−object

bottom−wall

Figure 6. This Figure shows part of the first s-image in L14’s source s-image series.
Each relationship is represented as an arrow. At the beginning of the arrow is the first
element of the relationship, and at the end of the arrow is the other. The boxed text in
the middle of the arrow is the Relation. Each string of unboxed text is a concept.
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The fifth transformation, another add-connections, places these containment walls
in the correct positions in relation to the door sets and the top and bottom walls.

We will describe the first two transformations in detail. The first transformation

in the lab-base1 source is a replicate, which takes two arguments: some object and
some number-of-resultants. In this case the object is door-set-b1s1 (represented as
door-set in Figure 6. b1s1 means “base one, s-image one.”) and the number-of-arguments
is two. The replicate is applied to the first L14 s-image, with the appropriate adap-
tation to the arguments: The mapping between the first source and target s-images

indicates that the door-set-b1s1 maps to the door-set-l14s1, so the former is used for
the target’s object argument. The number two is a literal, so it is transferred directly.

Using a function that takes in the name of an element instance or set (in this case
door-set-l14s1) and recursively returns all set names and element instances, Galatea
retrieves (from memory of the source s-image with the replications in it) all propo-
sitions containing any of those set names and element instances. These propositions are
put through a function that creates the same number of new propositions with the same
relations and literals, but with new names for the element instances. These new
propositions are stored in memory. The effect of this is a replication of the intended
structure. This occurs once for each replication.

Galatea chooses an arbitrary name for the superset of door-sets (in this case
door-sets-set-l14s2) and connects door-set1-l14s2 and door-set2-l14s2 to it with
in-set relations. It makes a map between L14’s s-image1 and s-image2, connecting
door-set-l14s1 to door-sets-set-l14s2. It also creates maps from door-set-l14s1

to door-set1-l14s2 and another to door-set2-l14s2.
The other propositions from L14’s s-image1 are put through a function that finds

analagous propositions: literals and relations are kept the same, and element in-
stance names are replaced with new names for the new s-image. For example, the
top-door-l14s1 becomes top-door-l14s2.
Maps between the element instances in the target s-image1 and the target s-image2

are stored in memory as well.
The mapping between lab-base1-simage2 and l14-simage2 is automatically gener-

ated. Element instances that are results of source transformations are mapped to
newly-generated instances in the target. All other maps are carried over to the new
s-images with their new names.

The inputs to replicate are the object to be replicated DOOR-SET-L14S1, the number
of resultants 2, the current and next target s-images L14-SIMAGE1 and L14-SIMAGE2,
the mapping L14-SIMAGE1--L14-SIMAGE2--MAPPING1 and the memory.

The second transformation is add-connections. The effect of this transformation is
to place the replicated door-sets in the correct spatial relationships with the other element
instances. It takes connection-sets-set-b1s3 as the connection/connection-set ar-
gument. This is a set containing four connections. Galatea uses a function to recursively
retrieve all connection and set proposition members of this set. These propositions are
put through a function which creates new propositions for the target. Each proposition’s
relation and literals are kept the same. The element instance names are changed
to newly generated analogous names. For example, door1-endpoint-b1s3 turns into
door1-endpoint-l14s3.
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Then, similarly to the replicate function, horizontal target maps are generated, and
the other propositions from the previous s-image are instantiated in the new s-image.

The inputs to this transformation are nothing (denoting that there is not any thing in
the previous s-image that is being modified), the connection set connection-sets-set-b1s3,
the source s-image lab-base1-simage2, the current and next target s-images l14-simage2

and l14-simage3, the mapping l14-simage2--l14-simage3--mapping1 and the mem-
ory.

It is important that 1) differences between the analogs can be represented in Covlan
and 2) that the procedure can be transferred between the analogs. Too see the differences
between the analogs, we now examine what made L14 (Figure 4) differ from the stimulus
drawing: L14 features a longer vestibule in the drawing than the vestibule pictured in the
stimulus. In fact, there is no trimmer arm (analogous to the wall in the lab problem) in
the drawing at all that is distinct from the vestibule, save a very small section, apparently
to keep the spinning trimmer blade from hitting the vestibule. The entire drawing is
rotated ninety degrees from the source. The single lines in the source are changed to
double lines in the target. The doors also slide in and out of the vestibule walls. What’s
interesting about this modification is that it does not appear that this kind of door opening
is possible with the diagram given of the lab in the source: Since the door is a rectangle
that is thicker than the lines representing the walls, the door could not fit into the walls.
In contrast L14 explicitly makes the doors and walls thick (with two lines) and makes
the doors somewhat thinner. L14 adds objects to the target not found in the source: a
blade and a twisting mechanism to describe how the doors can work. L14 also included
numerical parameters to describe the design of the trimmer, to describe length. Finally,
L14 includes some mechanistic description of how the trimmer would work.

In summary, these differences are:

1. long vestibule

2. rotation

3. line to double line

4. sliding doors

5. added objects

6. numeric dimensions added

7. mechanisms added

Of these seven differences, Galatea successfully models four of them. The rotation of
the source is modeled by a rotation in the target start s-image. In this s-image, all
spatial relationships are defined only relative to other element instances in the s-image.
Each instance is a part of a single set which has an orientation and direction. In the case
of s-image 1 of the target, it is facing right. Since all locations are relative, there is no
problem with transfer and each s-image in the model of L14 is rotated to the right.

The line to double line difference is accounted for by representing the vestibule walls
with rectangles rather than with lines, as it is in the source. Because the mapping between
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the source and target correctly maps the side1 of the rectangle to the startpoint of
its analogous line, the rectangle/line difference does not adversely affect processing and
transfer works smoothly.

The long vestibule difference is accounted for by specifying that the heights of the
vestibule wall rectangles are long. In the source the vestibule wall lines are of length
medium, but this does not interfere with transfer.

The trimmer head added object is accounted for by adding a circle to the first s-image
in the target.

Unaccounted for are the two bent lines emerging from the vestibule on the left side,
the numeric dimensions and words describing the mechanism. Also, L14 shows one of
the doors retracting, and the model does not. The model also fails to capture the double
line used to connect the door sections, because the single line is transferred without
adaptation from the source. This could be fixed, perhaps, by representing the argument
to the add-component as a function referring to whatever element is used to represent
another wall, rather than as a line.

.

5. Related Work

Though much work on visual languages involves visual programming aids, there are
some visual languages meant to model the visio-spatial representations in diagrams. Liu’s
PI system (19) represents objects (points) and operations (ruler and compass operations),
deliberately limited to the Euclidean geometry domain. GeoRep (10) uses a set of “prim-
itive shapes”. Like Covlan, Georep has line segments, circles, and splines. In addition it
has circular arcs, ellipses, and positioned text strings. Like Covlan GeoRep is intended
to be a model of human visual reasoning. Rectangles, circles, curves, and lines are a part
of Covlan because they were all found to be common visual elements of diagrams (18),
suggesting that they are salient visual symbols in human beings. Covlan has connections
and sets to represent simple grouping and spatial relationships between elements.

Erwig and Schneider (8) represent changes for geographic visual objects. Their system
allows queries with respect to what things have happened (e.g. has a tornado ever passed
through Iowa?). Like GeoRep this system does not represent visual changes to systems,
which Covlan does with its visual transformations.

Letter Spirit (14) is a system that takes as input a stylized letter and generates the rest
of the alphabet in the same style. It has visual representation at two levels– the lower level
is a bunch of lines that can compose letters, much like an LED clock. At a higher level the
system represents the “roles” for parts of letters, such as the cross-post in the letter ‘t’.
Though Letter Spirit and Galatea have some similarity in terms of functionality, due to
the domain-specific nature of Letter Spirit, there is no overlap in their visual languages.

Covlan’s representations for reasoning about analogies resemble those of the analogy
ontology of Forbus, Mostek and Ferguson (11), though theirs is focused more on the map-
ping problem and ours on transfer of multi-step procedures. Covlan explicitly represents
sequences of visual operations and manages the complexity involved with, for example,
adding objects and keeping track of what is done with them.
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6. Discussion

As stated in the introduction, our hypothesis is that Covlan enables a visual represen-
tation of problem-solving procedures that is useful for analogical transfer of a procedure
from a known analog to a new problem. We have described Galatea, a computer program
that uses Covlan representations to transfer procedures from analogs to new problems.

There are seven models written in Covlan and Galatea that support this claim. We
described the model of L14 in this paper. In addition we modeled three additional partic-
ipants from the Craig et al. experiment, a historical example from the scientific thinking
of Maxwell (6), the fortress/tumor problem (4) and the cake/pizza problem (5). Each of
these models uses analogical reasoning to solve a problem using only visual knowledge.

We modeled three other participants in the lab/weed-trimmer experiment. In total,
these four were, by our estimation, the four most difficult. The same transformations were
used to model all four. Some of the three received different images of the lab problem (e.g.
top view) but all received the same text, and the same target weed-trimmer problem.

The cake/pizza example splits a cake up into some n number of pieces and transfers
the decompose transformation to split the pizza into some m number of pieces.

The Fortress/Tumor problem is used in a classic cognitive psychology experiment (12;
7). Participants read a story about a general with a large army who wants to overtake a
fortress. The roads to the fortress, from all around, are mined such that if large numbers
of people are on them they will explode. To solve the problem the general breaks his army
into smaller armies which each take different roads. They simultaneously arrive at the
fortress and overtake it. Participants are then asked to design solutions to a new problem
in which a patient with an inoperable tumor need to have it removed through radiation.
The problem is that the radiation will destroy healthy tissue on the way in, killing the
patient. Some participants are able to produce the analogous solution, which is to have
several weak rays meeting at the tumor such that no healthy tissue is radiated enough to
hurt it, but the tumor gets the full force.

Our model transfers the fortress solution to the tumor problem through visuospatial
similarity of the symbols representing the marching armies and rays of radiation. In both
the fortress and tumor problems the marching armies and rays were represented as thick
lines which get decomposed into thinner lines. Thus radically different entities can share
a transformation, allowing a transfer of a solution through analogy.

James Clerk Maxwell used visual analogy to derive the electromagnetic field equations
(16). He theorized that magnetic forces were caused by centrifugal forces of swirling
vortices of aether. These vortices were packed together, and because they spun in the
same direction, he theorized that they would grind to a stop. To solve this problem he
introduced “idle wheel particles” spinning in the opposite direction between the vortices.
Nersessian hypothesizes that Maxwell used a visual analogy drawn from another memory
to obtain the notion of the idle wheels and then transfer the notion to the vortex idea.
Maxwell noted that in machine mechanics such problems are solved with idle wheels (13).
But gear systems and the fluid vortex model are very different. She hypothesizes that
understanding the cross-sectional model of the vortices generically as “spinning wheels”
enabled Maxwell to retrieve his knowledge of gear systems which in turn enabled him to
generate the abstraction of “dynamically smooth connectors” and instantiate the “idle
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wheels” between the vortices. In the Galatea model of this process, the vortices are ab-
stracted into circles, representing their cross-section. The dynamically smooth connectors
and idle wheels are also represented as circles, allowing the addition of the idle wheels to
be transferred to the vortex s-image series.

The fact that four of these models are based on human experimental participant
sketches, and one is based on historical data, lends support to our hypothesis that Covlan
captures some aspects of human visual representations. As shown above, our lab/weed-
trimmer models accounted for most of the differences between source and target, as dis-
played in the participant data, showing that the system can successfully adapt changes to
new cases as humans intend them to in many cases. The processing of Galatea’s models
is relatively simple because the Covlan provides a symbolic vocabulary for representing
visual knowledge at a useful level of abstraction: solving a difficult problem is made easier
by representing visual knowledge at a level of abstraction useful for that class of problems.
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