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1 Introduction

Visual analogy is a topic of longstanding and growing interest in Al. Evans’
early ANALOGY program solved multiple choice geometric analogy problems
of the kind found on many intelligence tests [9]. Figure 1 illustrates this kind
of A:B::C:? problem. To address this problem, ANALOGY first found the
relational differences between A and B, then found the relational differences
between C and each of the available choices, and finally selected the drawing
whose relational differences with C were most similar to the relational dif-
ferences between A and B. The more recent Letter Spirit system [35] takes
a stylized seed letter as input (e.g., f but with the crossbar suppressed) and
outputs an entire font, from a to z, in the same style as the seed. Letter Spirit
addresses this problem by first finding the base letter most similar to the
seed letter and thus determining what letter is presented as the seed (e.g., ),
then determining the relational differences base letter and the seed letter (e.g.,
crossbar in f is suppressed), and finally drawing similar components of other
letters in the same way as the seed letter. Thus, when Letter Spirit makes a
lower-case t, by analogy to the seed letter, it suppresses the crossbar. Note the
mappings between letter components are already in the system: the vertical
bar part of the letter d maps to the vertical bar in the letter b, for example,

and similarly, the crossbar of t maps to the crossbar of f.

Neither ANALOGY nor Letter Spirit, however, engage in analogical problem
solving, a central issue in Al. This poses the primary question for this research:
is visuospatial knowledge alone sufficient for analogical problem solving? Prob-
lem solving may be characterized as generation of procedures that contain two

or more steps. Typically, the procedures are strongly-ordered in that certain
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Fig. 1. Evans’ ANALOGY program solved problems in geometric analogy. Given A,
B, and C, the problem is to determine which one of the choices 1-5 has a relationship
to C that is most similar to the relationship B has to A.

steps must precede others. It follows that analogical problem solving involves
the transfer of a procedure from a source (or base) case to a target prob-
lem. We start with the initial hypothesis that visuospatial knowledge alone is
sufficient for analogical transfer of strongly-ordered procedures. This leads to
the first goal of our work: to develop a computational theory of visuospatial

analogy in problem solving.

As ANALOGY and Letter Spirit illustrate, analogies in general address new
problems by finding relational similarities and differences between a target
problem and a source case and transferring some knowledge (or action) from
the source to the target. In general, analogy involves several subtasks including
retrieving from memory the source case most similar to the target problem,
mapping (or aligning) the the elements of target and the source, transferring
knowledge from the source to the target, evaluating what was transferred in
the context of the target, and storing the target in memory. These tasks may
themselves involve additional subtasks. For example, the retrieval task may
be decomposed into the subtasks of reminding and selection, and the transfer
task may involve the subtask of adaptation. ANALOGY addresses only the
mapping and transfer subtasks of analogy. In contrast, Letter Spirit addresses

only the retrieval, transfer and evaluation subtasks (since the mappings be-



tween different letters are already stored in the system). A second goal of
our work is to build a unified theory of visuospatial analogy that not only
addresses all major subtasks of analogy, but also uses a uniform knowledge

representation for all the subtasks.

Also as illustrated by ANALOGY and Letter Spirit, visuospatial analogy refers
to analogy based only on the appearance of a situation. e.g., the shape of
the letter f and the spatial relationship between its components. Causal and
functional knowledge is either not present or is (at most) implicit. Thus, in
visuospatial analogy, knowledge states in source cases and target problems
are characterized by shapes of objects (e.g., a line, a semi-circle, etc.), and
spatial relations among the objects or their components (e.g., above, left-of,
contained-in, etc.). Both ANALOGY and Letter Spirit describe a content ac-
count of shapes and spatial relations in their respective domains. Our work
similarly describes a content account of shapes and spatial relations for vi-
suospatial analogy in problem solving, and provides a vocabulary and data

structures for representing the content.

In addition, both ANALOGY and Letter Spirit provide a process account
for their respective tasks. Their process account is articulated in terms of
their task decompositions, methods for accomplishing specific tasks in the
task structure, and algorithms corresponding to the methods. Our work simi-
larly provides a process account for visuospatial analogy in problem solving in
terms of task structures, methods and algorithms. A significant finding of our
work is that if and when a step in the problem-solving procedure being trans-
ferred from a source case to a target problem creates new objects, then the
analogical process needs to dynamically generate a new mapping between the

corresponding intermediate states in the source case and the target problem.
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Fig. 2. At the task level, Proteus is a theory of problem solving. At the level of meth-
ods, it uses analogical reasoning to solve problems. In terms of types of knowledge,
it uses only visuospatial knowledge for making analogies.

The Proteus system is an implementation of our computational theory of vi-
suospatial analogy in problem solving. Proteus addresses all major subtasks of
analogical problem solving. However, since visuospatial representations do not
capture (non-visuospatial) causal and functional knowledge, the mapping task,
as we will describe in detail below, generates multiple initial mappings between
a retrieved source case and the target problem. Further, since the evaluation
subtask appears to require causal and functional knowledge, and since causal-
ity is (at most) only implicit in visuospatial representations, Proteus does not
automate the evaluation task with visuospatial reasoning. By examining the
limitations of use of visuospatial knowledge alone, Proteus helps identify the

necessary functional roles of causal knowledge in analogical problem solving.
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Fig. 3. This figure illustrates the input and output to Proteus’ transfer in the ab-
stract. The input is an s-image representing the target problem (shown at the
bottom left). The output is a procedure represented as a sequence of s-images
(shown in the gray area at the bottom-right of the figure). Proteus generates the
procedure by transferring a procedure from a source case (shown at the top of the
figure). In the process, it retrieves source cases, generates mappings between the
target problem and the source case as indicated in the figure, and so on.

2 Proteus

Knowledge states in Proteus are represented as 2-D line drawings generated
by vector graphics programs such as Xfig and Jfig. We will call these states
s-images (an abbreviation of ‘symbolic images,’ as they contain imagistic in-
formation represented symbolically). Proteus takes as input an s-image rep-
resenting an unsolved target problem, and outputs a procedure to solve the
target problem, where the output procedure is a sequence of s-images and
transformations between them. Figure 3 illustrates what Proteus generates
once a source analog is selected. Given an s-image representing the target
problem (at the bottom-left of the figure), Proteus generates a procedure for
solving the problem in the form of a sequence of s-images (shown in the gray

area in figure).

Proteus contains a long-term memory of source cases, where each source case
contains a problem-solving procedure (as illustrated in Figure 3), and is in-
dexed by an s-image representing the initial knowledge state in the procedure.

Proteus solves an input target problem by executing the five major subtasks



of analogy. The first task is retrieval, in which the target problem, represented
by a single s-image, is used as a query into the case base. If the retrieval
task outputs multiple source cases, then Proteus selects one for further pro-
cessing. The second subtask is mapping (as indicated in Figure 3), in which
the elements (i.e., objects, relations) of s-image representing the target prob-
lem are matched with corresponding elements in the s-image with which the
source case is indexed. The output of the mapping task is a series of maps,
each linking an element in the source to an element in the target. The third
subtask is transfer. Proteus transfers the steps in the procedure in the source
to the target problem one step at a time. The transfer task may also involve
adaptation of some elements in the source case. The fourth step is evaluation.
Proteus presently uses precompiled knowledge for evaluating the solution to
the target problem, as described below. If the evaluation fails, then it goes
back to the output of the retrieval task, and selects a different source case for

processing.

2.1 An Illustrative Example

We will use the classic fortress/tumor problem [8] as the running example
throughout this paper. In this problem, a general must overthrow a dictator
in a fortress. His army is poised to attack along one of many roads leading to
the fortress when the general finds that the roads are mined such that large
groups passing will set them off. To solve the problem, the general breaks the
army into smaller groups, which take different roads simultaneously, arriving
together at the fortress. In the unsolved target problem there is a tumor that
must be destroyed with a ray of radiation, but the ray will destroy healthy

tissue on the way in, killing the patient. The analogous solution is to have
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Fig. 4. This figure illustrates the input and output of the transfer stage in Proteus
for the fortress/tumor problem. The input is an s-image representing the target
tumor problem (shown at the bottom left). The output is a procedure represented
as a sequence of s-images (shown in the gray area at the bottom-right of the
figure). Proteus generates the procedure by transferring a procedure from the source
fortress case (shown at the top of the figure). In the process, it retrieves source cases,
generates mappings between the target problem and the source case as indicated in
the figure, and so on.

several weaker rays simultaneously converging on the tumor to destroy it.

Figure 4 illustrates Proteus’ task for the fortress/tumor problem.

2.2 Knowledge Representation

It is important that Proteus use an uniform knowledge representation for all
subtasks of visuospatial analogy in problem solving. Drawing in part on the
literature on visuospatial reasoning (e.g., [22,1]), and partly by trial and error,
we designed a knowledge representation language called Covlan (for Cognitive
Visual Language). Covlan provides a vocabulary for representing (a) primitive
visuospatial elements in an s-image (such as a circle, a set, a connection),
(b) primitive visual relations s-image (such as touching, above, left-of), (c)

qualitative variables in s-images (such as locations, sizes, thicknesses), (d)



Primitive Visual Transformations

Transformation name | arguments

add-element | object-type, location (optional)

add-connections | connection/connection-set

decompose | object, number-of-resultants, type

move-to-location | object, new-location

move-to-set | object, object2

put-between | object, object2, object3

replicate | object, number-of-resultants

Table 1
Primitive transformations.

primitive transformations that apply to the visual elements and relations, and
change the elements, relations and/or the values of variables (such as move,
decompose, replicate), and (e) mappings between s-images. Of course, Covlan
in its present form is incomplete; a different class of problems than the one we
have studied may require additional primitives, which may provide additional

expressivity and precision.

2.2.1 Primitive Transformations

Table 1 shows Covlan’s ontology of transformations. The application of the
first entry, add-element, to an s-image adds a new primitive element in the
next s-image in a procedure. The first argument, object-type, must be an
instance of one of the primitive elements (e.g. square or circle, described
below). It determines what kind of shape appears in the next s-image. The
second argument specifies the location of the shape. Covlan uses qualitative
locations: bottom, top, right, left, or center. As Figure 5 illustrates, the
application of add-element builds a representation for the next s-image by

adding three propositions to the representation of the current s-image (all of
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Fig. 5. A graphical representation of the three relationships added to an s-image
by the add-component transformation. Relations are boxed. beginning of arrows
are the in the

Proteus’ memory is in propositional form: a relationship connects two concepts
with a relation.) (1) a has-component relation with the name identifying the
new component, 2) the new component’s name with a 1ooks-1ike relation to
the object-type, and 3) the component’s name with a has-location relation

to the location input as an argument.

Add-connections is a transformation that inserts a set of connections in the
next s-image. The input is the name of the set of connections in the source.
To determine the nature of the connections in the target, Proteus uses substi-
tution for all the symbols in the source and the target to find the analogous

names, so that analogous connections are placed in the next target s-image.

Decompose takes a primitive element and replaces it in the next s-image with
some n elements. It also correspondingly reduces the thickness for each of

those elements.

Move-to-location changes the location of a primitive element from one loca-
tion to another. This means that in the next s-image, the old has-location
relation is removed and a new has-location relation is added, relating the
element to the input location, which can be an absolute location or another

element instance (in which the two element instances are co-located.)

Move-to-set takes in two sets as input (we will call them set-a and set-b).

The members of set-a are moved to the locations of the members of set-
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Primitive Visual Elements

Element name | attributes

connection | subject, object, angle, distance

rectangle | location, size, height, width, orientation

circle | location, size, height

line | location, length, end-pointl, end-point2, thickness

set | location, orientation, front, middle

Table 2
Primitive elements.

b. If set-a and set-b have the same number of element instances, then each
element of set-a is placed on a distinct element in set-b. The element instance
matching is arbitrary. If set-a has more elements, then multiple members of
set-a are placed at the locations of each member of set-b. The number of
element instances in these groups is determined by the number of elements in
set-b divided by the number of elements in set- a. If set-b has more elements,
then elements of set-a are distributed across the locations of the members of

set-b.

Put-between takes two objects that are touching, and places some third
object in between them. In the new s-image 1) the two objects are no longer

touching and 2) the third is touching both of them.

Replicate takes in an element or set of elements and generates n new instances
of that element or elements in the next s-image. Its behavior is similar to
decompose, except that it does not change the size or thickness of elements,

and can work on sets as well as single element instances.

11



2.2.2 Primitive Elements

Covlan’s ontology of primitive visual elements (Table 2) contains: rectangle,
circle, 1line, and set. The elements are represented as frames with slots that
can hold values. For example, a rectangle has a location, size, height,
width, and orientation. All elements have a location, which holds a value

representing an absolute location on an s-image (e.g. top, right).

The connection is a special element which we describe under primitive rela-
tions. The set is another special element. A set can contain any number of
instances of elements. Sets also have an orientation, the value of which
is one of the primitive directions (described below). An element instance
in the set is specified in the representation as the front, and another element
is specified as the middle. The orientation is defined as an (imaginary) line

from the middle to the front in the direction specified in the orientation.

Sometimes a part of an element instance must be referenced. For example,
if a line touches the middle of another line, there must be some way to describe
the end of the first line and the middle of the next. To support this, in Covlan
different primitive elements have different kinds of areas such as middle and

end.

Lines have start and end points, as well as right-side and left-side
mid-points. The element instance’s names are related to the symbols nam-
ing these areas (e.g. linel-end-point with area-relations: has-end-point,

has-start-point, has-rightsidemiddle, and has-leftsidemiddle.)

Circles, squares, and rectangles have sides, which are related to element
instances with the following relations: has-sidel (the top), has-side2 (the

right side), has-side3 (the bottom), and has-side4 (the left side).

12



Fortress Problem Elements
Visual Object | attributes value
Fortress looks-like: curve
location: center
Bottom-road looks-like: line
Right-road looks-like: line
Left-road looks-like: line
Top-road looks-like: line
Soldier-path looks-like: line
location: | bottom-road
thickness: thick

Table 3
Primitive elements from fortress problem s-image 1.

Qualitative Variables

angles | perpendicular-angle, right-angle-cw,
45-angle-cw, 45-angle-ccw,

right-angle-ccw

locations | bottom, top, right, center, off-bottom

off-top, off-right, off-left

sizes | small, medium, large

thicknesses | thin, thick, very-thick

speeds | slow, medium, fast

directions | left, right, up, down

lengths | short, medium, long

Table 4
Classification of Variables

Table 3 shows some of the visual elements and their attribute values for the

first s-image in the fortress problem.

13



Visual Relations

Visual Relations | touching, above-below, right-of-left-of,

in-front-of-behind, off-s-image

Motion Relations | rotating, not-rotating

Table 5

Primitive visual relations.

is—subject-for-connectign

— Squarel--square2--connectior

is—object—for-connectiol
square

Fig. 6. A graphical representation of the relationships involved with a connection.
Square? is a short distance to the right of squarel. Right-angle-cw means that
the angle is a right angle in the clock-wise direction.

2.2.8  Qualitative Variables

squarel i
= short-distance

~ right-angle-cv

Qualitative variables are symbols that can take a qualitative value for element
attributes or transformation arguments. They can be broken down into the
following types: angles, locations !, sizes, thicknesses, numbers, speeds,

directions, and lengths.

2.2.4 Primitive Relations

The class of primitive visual relations (shown in Table 5) describe how
certain visual elements relate to each other and the variables. Motion relations
(see Table 5) describe how element instances are moving in an s-image.

Rotation has the arguments speed and direction.

Many spatial relationships between primitive elements are represented with
connections. A connection is a primitive element with a name. Connections
are frames with two four-slots: subject, object, angle and distance, repre-
sented with is-subject-for-connection, is-object-for-connection, has-angle

1 Relative locations, as opposed to absolute locations, are classified under
primitive visual relations.

14



perpendicular-angle

45-angle-ccw 45-angle-cw

right-angle-cc right-angle-cv

Fig. 7. Each of the fifteen black dots in the Figure represents a qualitative
connection area, with an angle and direction.

and has-distance. These relations connect the connection name to distances
and angles, which are qualitative variables, as illustrated in Figure 6.
The object of the connection is distance away from the subject in the

direction of angle.

The distances are touching-distance, short-distance and long-distance.
The angles are perpendicular-angle (straight ahead), right-angle-cw (a
right angle in the clockwise direction, or to the right), 45-angle-cw (a forty-
five degree angle to the right), 45-angle-ccw (a forty-five degree angle in the
counter-clockwise direction, or to the left), and right-angle-ccw (a right an-
gle to the left). Figure 7 illustrates the different kinds of connections Covlan
can represent. Areas of element instances, as well as element instances

themselves can be connected.

2.2.5 Mappings between S—images

An s-image in the source can have an analogy between it and its correspond-
ing s-image in the target. Each analogy can have any number of analogical

mappings associated with it (determining which mapping is the best is the

15



mapping problem.) Each alignment between two element instances or areas

in a given mapping is called a map.?

Similarly s-images next to each other in sequences have transform-connections.

These are necessary so Proteus can track how visual elements in a previous

s-image change in the next. A difference between analogies and transform-connections
are that there can be multiple analogical mappings for an analogy, but only

one mapping for a transform-connection. Transformations are attached to

a map between two element instances in sequential s-images. Thus, if a

rectangle changes into a circle, Proteus knows which rectangle in the

previous s-image turns into which circle in the next s-image.

Proteus represents the fortress case as a sequence of three s-images as il-
lustrated in Figure 4.) The first s-image is a representation of the original
fortress problem. It had n roads, represented as thick lines, radiating out from
the fortress, which was a curve in the center (curves are used to repre-
sent irregular shapes). Proteus represents the original soldier path as a thick
line on the bottom road. This s-image was connected to the second with a
decompose transformation, where the arguments were soldier-pathl for
the object and four for the number-of-resultants. The second s-image
shows the soldier-pathl decomposed into four thin lines, all still on the

bottom road. The 1lines are thinner to represent smaller groups.

Proteus represents the start state of the tumor problem as a single s-image.
The tumor itself is represented as a curve. The ray of radiation is a thick

line that passes through the bottom body part.

2 A map is called a match hypothesis in the SME literature [10].

16



2.8 Retrieval of Source Cases

Proteus’ method for retrieval in visuospatial analogies draws on two ideas
from earlier work on case retrieval. Firstly, following MAC/FAC [17], Proteus’
retrieval method decomposes the retrieval task into two subtasks: reminding
(or initial recall), and selection. Secondly, following ACME [29], Proteus views
case retrieval as a constraint satisfaction problem. Note that while MAC/FAC
uses structure-mapping [10] for the selection task, ACME uses a relaxation
procedure based on spreading-activation for the retrieval and mapping task
as a whole, though there is a complementary system called ARCS [39] which
employs much the same method for retrieval by weakening the structural con-
straints. In contrast, Proteus uses feature vector matching as the method for
the first task of reminding, and constraint satisfaction with backtracking for

the second task of selection.

The retrieval task is essentially one of matching objects (variables and con-
stants) in the target and the source under the constraints imposed by the
propositions in which they appear. An s-image can be viewed as a network
of relationships between visual elements, and so we can view the element
instances of the target s-image as wariables, whose potential values are
element instances of all the source s-images in memory, and the links
between element instances in the target we can view as constraints that
must hold between the variables. Thus, each proposition imposes a constraint

between two variables in the s-image.

Treating the element-instances in the target as variables to be assigned val-
ues, the potential values are the element instances from the s-image de-

scriptions in memory, all of which are considered at once. That is, the method

17



is not performing a separate test on each potential source in memory, but,
rather, it is running a search procedure on the entire memory considered col-
lectively. The constraints on the values assigned to the variables (the target
elements) are precisely those imposed by the subgraph isomorphism prob-
lem: if elements A and B from the target are to be matched with elements
X and Y from memory, respectively, then, first, X and Y must be in the
same s-image; second, all relations that hold between A and B must also
hold between X and Y, respectively. If these constraints are met, then A can
be matched with X and B can be matched with Y. Here, the constraints are
binary (say, A is left of B—a relational constraint). The only exception is the
constraint that all values be from the same s-image, but this can be inferred

from the binary constraints.

2.3.1 Retrieval and Matching Process

The matching process works in three phases: initialization of domains, reduc-
tion of domains, and finding the matching, where matching means subgraph
isomorphism. The first phase initializes the target domains to sets of values
that are involved in the same kinds of relations. The second phase reduces
these domains by eliminating values that are not all in the same s-image.
These two phases reduce the selection of values for each variable. The third
phase actually computes the isomorphism using constraint satisfaction and

backtracking.

The first phase (initialize domains) works by finding element instances in
memory that “look similar” to the target elements: if a target element A has,
say, three relations whose labels are R, S, and 7', then the algorithm builds

a list of all elements in memory—across all the potential source s-images—

18



function InitDomains

1. Target s—image and Covlan description

Input: 2. The memory: memory

Output: | 1. A list of potential source elements for each target element

Procedure:
1: Let Nodes be a list of all the nodes in the target
2: for all w € Nodes do
3:  InitDomain[w] < {}

4:  Let Terms be a list of all the terms in which w appears
5:  MappedNodes < none
6: for all term € Terms do
T Let Candidates be a list of all nodes from memory incident on
a term whose label matches term (either incoming or outgoing
as appropriate)
8: if MappedNodes = none then
9: MappedNodes < Candidates
10: else
11: MappedNodes < Candidates N MappedN odes

12:  InitDomain[w] - MappedN odes
13: return InitDomain

Table 6

Algorithm for InitDomains, which initializes the domains of the target variables—
that is, a list of potential source element instances for each target element
instance.

that have at least three relations with labels R, S, and T. We call this the
“signature” of an element. The second phase (reduce domains) works by en-
suring that the set of s-images that are represented in the domain of (list of
values for) each variable is the same. This serves to eliminate any value from
the domain of any variable that does not come from a s-image represented in

every other variable’s domain.

The first stage applies two heuristics to the s-images in memory: (1) prune
any individual element (as opposed to entire s-images) that does not have
the same signature as the corresponding target element, and (2) prune any

propositions whose associated s-images are not represented in every target

19



function ReduceDomains

1. The memory: memory

2. List of all elements in the target s-image (Nodes)

3. Initial target domains (list of potential elements from
memory for each target element)

Input:

Output: | 1. Reduced target domains

Procedure:

1: InitDomain < InitDomains()
2: Determine the associated s-images for each element of each list
in InitDomains
Let Referencelist be the intersection across all of these lists
for all w € Nodes do

Domain|w] « {}

CurrentList <+ {}

for all i € InitDomain|w] do

if the document id of 7 is in Referencelist then
Add ¢ to CurrentList

10:  Domain|w] <— CurrentList
11: return Domain

Table 7

Algorithm for ReduceDomains, which eliminates from the domains any element
instances from s-images not represented by at least one element instance in
every domain. Each variable domain is a list of elements, and each element is labeled
by the s-image that contains it (in line 2, above).

element’s domain. The latter enforces subgraph isomorphism. It is important
to note that these are both logically implied by the similarity metric that the
last phase, described below, implements. It would be an interesting experiment
to look at other heuristics that prune out mappings that might have otherwise

been returned by the last phase. These two algorithms appear in tables 6 and
7.

The last phase of the retrieval process (find matchings) is the most important
step. The basic procedure is one that generates matchings, checking them
for consistency as it goes, and backtracking when necessary. The test, here,

is actual subgraph isomorphism: if A is related to B in the target, then the

20



relations (links, edges) between any element that A maps to and and any
element that B maps to must include at least those that held between A and
B. This algorithm returns all valid mappings. The idea is that the first two
phases have restricted the set of possible mappings to search through so that
there are not nearly as many, now, as there would have been if a depth-first
search without heuristics had been done. This algorithm appears in table 8,
with a test performed at each attempt to expand the current mapping given

in table 9.

2.3.2  Mapping Between Source and Target Cases

For the sake of retrieval and mapping, Proteus first makes an index of all the
chunks in memory (a chunk is simply one “unit” of the representation, such as
a relation between two specific element instances, or an attribute-value pair
together with the associated element) in a discrimination tree. This is prior
to the calling of InitDomains, above (table 6), so that every access to mem-
ory in the above algorithms (InitDomains, ReduceDomains, and FindMatchings,
tables 6, 7, and 8). Since only initial problem frames should be retrieved, Pro-
teus looks for any s-image which is the first of a finished problem-solution
sequence, and only indexes those chunks from each such s-image in memory.
This prevents, for example, the tumor-problem s-image from mapping to
the fortress-solution s-image, which would be useless: we want it to map
to the fortress-problem s-image, the first one in the sequence, rather than

the last one.

Note that the visuospatial representations in Proteus capture only structural
constraints, e.g, shapes of visual elements, and spatial relations among the

elements and between the components of an element. The representations do
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function FindMatchings

1. Target s—image

2. List of all elements in the target s-image (Nodes)
3. Reduced target domains (Domains)

4. The memory

Input:

Output: | 1. List of all mappings from source to target

Procedure:

1: Domain < ReduceDomains()

: n < Length(Nodes)

: Let Mappings be nil (Mappings will be a list of lists, each one an
complete mapping)

4: Open < {(nil,nil)} (Open is a stack of all current partial map-
pings)

: while Open # {} do

(w, current) < Pop(Open)

7:  w is the current target element from Nodes, or nil of one hasn’t

been selected yet, and current is the current partial mapping
8:  w < GetNextElement(Nodes,w)
9: for all j € Domain[w]| do

w N

S Ot

10: if Consistent(w,j, current) then
11: new < Append(current, w = j)
12: if w = n then

13: Push(new,Mappings)

14: else

15: Push((w, new), Open)

16: Each item (list) in Mappings now corresponds to a matching from
the target to some document in memory.
17: return Mappings

Table 8

The algorithm for FindMatchings, which returns mappings for all source s-images in
memory for which the target s-image is a subgraph. Note that, above, {(nil, nil)},
the initial value of Open, is not the empty set {}; it has one element, an ordered
pair of nils. The first item in the pair is the current target element (nil at the start,
indicating one hasn’t been chosen yet), and the second is the current mapping (nil at
the start, indicating an empty mapping, which is added to as the search progresses)

not explicitly express causal and functional knowledge. Within this context,
Proteus’ method for mapping between a source case and the target problem
employs two key constraints. First, members of sets are not mapped, since

they are not employed in transfer (the notion of a set was introduced pre-
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function Consistent

1. A potential source element j (candidate map)
Input: 2. The current (partial) mapping
3. Target s-image

Output: | 1. True or false

Procedure:

1: if current = nil then

2:  return True

3: for allie{1,...,w—1} do

4: if Not all relations between target elements ¢ and w can be
found among the relations between current[i] and j then

5: return False

Table 9
Algorithm for Consistent, which attempts to determine if the proposed map is con-
sistent with the current partial mapping.

cisely to facilitate n-to-m mappings). Thus, any element instance on the
left-hand side of an in-set relation is pruned from the input to the map-
ping task (that is, when the index is getting built). Second, attribute values
(e.g. has-location center) and qualitative variables (e.g. has-size small)
are not mapped, only element instances, and so they are pruned from the
input as well. The alternative to this would be to allow them to be mapped,
but then to prune those maps from any mappings returned; however, attribute
values may or may not match between source and target, and so they may
violate the constraints of subgraph isomorphism, which were introduced as
constraints between elements, not between attribute values. It is thus more

useful to prune them out at the start.

The algorithm in shown in table 10. Note that this mapping algorithm gen-
erates multiple mappings instead of a single mapping between a single source
and target: it returns all mappings from all sources that satisfy the given
constraints. This is because the mapping algorithm uses only structural con-

straints present in the visuospatial representation of the source and target
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function RetrieveSourceMappings

Input: 1. A target s-image
2. memory
Output: 1. A list of mappings from all matching source s-images
to the target
Procedure:

1: index <+ empty dtree

2: problemFrames < all source s-images that are the first s-image
of a solved problem

3: sourceRels < all chunks in problemFrames that do not involve
literals and that do not involve members of sets

4: for all ¢ € all chunks in problemFrames do

5:  Index(c,index)

6: targetRels < target s-image chunks that do not involve
literals or members of sets length(sNodes))

7: targetNodes < target element instances from targetRels

8: mappings < findMatchings(sourceRels, target Nodes, target Rels,
domains)

9: return mappings

Table 10

Algorithm for RetrieveSourceMappings, which searches memory for s-images of the
problem frames of solved problems for any that match the given target s-image,
returning a list of mappings.

s—-images. It does not also use semantic and pragmatic constraints, such as
the goal of the problem solving in the source and target problems, because
causal and functional knowledge is not explicitly represented in the visuospa-
tial representation. Therefore, Proteus arbitrarily selects among the multiple
mappings, transfers the problem-solving procedure to the target, and evalu-
ates the transferred solution. If the evaluation fails, then Proteus returns to
the output of the mapping task, selects a different mapping and repeats the

process, until a mapping succeeds or it runs out of mappings to try.

In the fortress/tumor problem, the “correct” mapping maps the set of roads
to the set of body parts, the fortress to the tumor, and the army to the

ray. When Proteus addresses this problem, the heuristics mentioned above
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prune out the sets of roads and body parts, as well as the shapes and sizes
and positions of all the element instances. Thus, the only factors left to
influence the mappings were the the element-instances themselves. The
element-instances are Fortress, Tumor, Soldier-Path, Ray, Set1 (the set
of roads around the fortress), and Set2 (the set of body parts surrounding the

tumor). Proteus produced only one mapping:

(Fortress maps-to Tumor)
(Soldier-Path maps-to Ray)

(Setl maps-to Set2)

In this case, the relationship between the soldier-path and the fortress (namely,
that the soldier-path terminates at the fortress) mapped onto the analogous
relationship between the ray and the tumor (that the ray terminates at the
tumor). This determined the mapping exactly, and no other mappings were

even possible under this constraint.

On the other hand, for some of the other examples, a dozen or more mappings
were returned. In particular, we discovered an interesting conflict between the
needs of retrieval and mapping, and the needs of transfer: for transfer, if only
some of the source elements map onto only some of the target elements, trans-
fer can still be possible if the knowledge being transferred does not conflict
with anything else in the target. However, for retrieval and mapping, it is
straightforward to find all sources in memory for which the given target is
a subgraph (viewing the target representation as a graph), but it is not as
straightforward to find all sources for which some part of the target may map
to some part of the source. Some of the examples involved mapping of the
source onto a target which involved other elements in other relationships, and

so no mapping could be found using these methods, and the retrieval failed.
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2.4 Transfer of the Problem-Solving Procedure

The transfer task takes as input a target problem, represented as a single
s-image, an source case from memory, represented as a series of s-images
connected with transformations, and sets of possible mappings between the
target and the first s-image of the retrieved source. Proteus transfers solu-
tions from a source to the target and the evaluation step checks the quality of

the transferred solutions. Transfer stops when a satisfactory solution is found.

Proteus adapts and transfers each transformation in the source problem to
the target. The transformations are transferred literally and the arguments
of those transformations can be adapted. For example, the transformation
decompose is used to turn a primitive element instance into some arbitrary
number of resultants, taken as an argument. An argument of a transformation
can be an instance of one of three cases. Firstly, the argument can be a lit-
eral, like the number four or the location bottom. Literals are transferred

unchanged to the target.

Secondly, the argument could be a element instance member of the source
s—-image. In this case, the transfer procedure operates on the analogous element
in the target s—image. For example, in the first transformation in the fortress
story, the decomposed source soldier path gets adapted to the ray in the

target tumor problem. Thirdly, the argument can be a function.

2.4.1 Transfer Method

We first describe Proteus’s transfer method informally, with reference to Fig-

ure 4.
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(1) Identify the first s-images of the target and source cases. These
are the current source and target s-images.

(2) Identify the transformations and their associated arguments in
the current s-image of the source case. This step finds out how the
source case gets from its current s-image to the next s-image. In the
fortress/tumor example, the transformation is decompose, with four as
the number-of-resultants argument (not shown).

(3) Identify the objects of the transformations. The object of the trans-
formation is what object, if any, the transformation acts upon. For the
decompose transformation, the object is the soldier-pathi (the thick
arrow in the top left s-image in Figure 4.)

(4) Identify the corresponding objects in the target problem. Ray1
(the thick arrow in the bottom left s-image) is the corresponding com-
ponent of the source case’s soldier—-pathl, as specified by the mapping
between the current source and target s-images (not shown). A single
object can be mapped to any number of other objects? . If the object in
question is mapped to more than one other object in the target, then the
same transformation is applied to all of them in the next step.

(5) Apply the transformation with the arguments to the target
problem component. A new s-image is generated for the target prob-
lem (bottom middle) to record the effects of the transformation. The
decompose transformation is applied to the rayl, with the argument
four. The result can be seen in the bottom middle s-image in Figure 4.
The new rays are created for this s-image. Adaptation of the arguments

can happen in three ways, as described above: If the argument is an ele-

3 Though Proteus’s mapping generator will not do this, it is possible for mappings
associated with transform-connections.
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ment of the source s-image, then its analog is found. If the argument is a
function, then the function is run (note that the function itself may
have arguments which follow the same adaptation rules as transformation
arguments). Otherwise the arguments are transferred literally.

(6) Map the original objects in the target to the new objects in the
target. A transform-connection and mapping are created between
the target problem s-image and the new s-image (not shown). Maps
are created between the corresponding objects. In this example it would
mean a map between rayl in the left bottom s-image and the four rays
in the second bottom s-image. A map is also created between the ray1 to
the set of thinner rays. A mapping from the correspondences of the first
s-image enables Proteus to automatically generate updated mappings
for the subsequent s-images.

(7) Map the new objects of the target case to the corresponding ob-
jects in the source case. Here the rays of the second target s-image are
mapped to soldier paths in the second source s-image. This step is nec-
essary for the later iterations (i.e. going on to another transformation
and s-image). Otherwise the reasoner would have no way of knowing
on which parts of the target s-image the later transformations would
operate.

(8) Check to see if there are any more source s-images. If there are
not, exit, and the solution is transferred. If there are further s-images in
the source case, set the current s-image equal to the next s-image and

go to step 1.

Figure 8 shows the third s-image in the sequence generated for the tumor

problem by the above method.

28



tumor—s-image3

has—eleme;Jt
E tumor
first-ray

second-ray—————

—= third-ray

—= fourth-ray———— 1

has
thickness

——= top-body-area——— WY
thin

L _ right-body-area———

—= left-body-area———

—= bottom-body-area—

[ _ looks~like

curve line circle

top bottom right left center

Fig. 8. This Figure shows part of the third s-image in procedure for the tumor
problem. Each relationship is represented as an arrow. The start and ends of the
arrows are the ideas connected by the relation in the proposition. The boxed text
in the middle of the arrow is the Relation. Each string of unboxed text is an
element, element instance, or a miscellaneous slot value.

2.4.2 Dynamic Generation of Intermediate Mappings

Step 7 in Proteus’ transfer method described in the previous subsection gen-
erates a new mapping between the newly generated intermediate knowledge
state in the target problem and the corresponding intermediate state in the

source case. This is because the decompose transformation preceding this
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Fig. 9. A hypothetical target problem. The triangle represents some resource. Circles
represent two people both of whom a share of the resource. The distance between
the circles and the triangle indicates current possession of the resource.

state may create new visual elements in the state. Since this need for dynamic
generation of mappings is a new finding of our work, in this subsection we

discuss it in some detail.

Consider a hypothetical problem in which two people need the same resource,
but only one has access to it. This might be represented visuospatially as
illustrated in Figure 9, where the two circles represent people and the triangle
represents the one resource. The triangle’s proximity to one of the circles might

represent which person has possession of the resource.

Figure 10 illustrates a problem-solving state in the transfer of a procedure for
distributing a resource among people from a hypothetical source case to the
target problem. The sequence of s-images at the top of Figure 10 illustrates
the procedure for distribution of some other resource, depicted as a square, in
the source case: the resource is first decomposed into smaller shares, depicted
by smaller squares, and then moved to the vicinity of the people. The target
problem of Figure 9 is shown in the bottom left of Figure 10. The dotted
curves at on the left side in Figure 10 show the initial mappings between the
s—-image representing the target problem and the first s-image in the source

case.

Now consider what happens when the problem-solving procedure is transferred
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Fig. 10. This Figure illustrates a state of problem solving during transfer of a prob-
lem-solving procedure from a source case to the hypothetical problem. In this state,
the decompose transformation has just been transferred from the source case and
applied to the first s-image in the target problem. Th application of this transfor-
mation creates a new element in the second s-image of the target case.

from the source case to the target problem. First, the decompose transformation
in the source case is transferred to the target and applied to its s-image.
This results in the generation of an intermediate knowledge state containing
two smaller triangles. The difficulty arises when the next transformation,
move, is transferred from the source case and applied to the newly generated
s—image in the target problem: what element in the s-image should move ap-
ply to? Since the small triangles in the target are the creation of the previous
transformation, the initial mapping between the source and the target does

not have any mapping between the small triangles in the target and the small

squares in the source!

Therefore, it follows that if and when a transformation in the target case
creates a new object, there is a need to dynamically generate a new mapping
between the newly created intermediate knowledge state in the target and
the corresponding intermediate knowledge state in the source case. Note that

although we have described this problem in the context of visuospatial analogy
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in problem solving, it appears to be independent of the type of knowledge;
instead, it seems like a characteristic of all analogical problem solving in which

new objects are created.

2.4.8 Transfer Algorithm

Table 11 contains a more formal specification of the main algorithm for the
transfer task. The unspecified functions used in this algorithm (e.g., adapt-
arguments, carry-over-unchanged-relationships) are described in the following

subsections.

2.4.4 Adapt-arguments

When an argument needs to be adapted to the target problem, Proteus deter-
mines whether it is a 1iteral, a function, or a component of an s-image.
Literals are returned verbatim. If the argument is a function (e.g. the number
of people in a group) then Proteus applies the same function to the analogous
group in the target and returns that value. If the argument is a component,
then Proteus returns the analogous object in the target. The algorithm ap-

pears in table 12.

In the fortress/tumor problem, the adapt-arguments algorithm takes in the
symbols FOUR and FORTRESS-PROBLEM-TUMOR-PROBLEM-MAPPING1. Since FOUR
is in Galatea’s list of literals, it executes the “literal” case and returns the

symbol as is: FOUR.

Since this case does not occur in the fortress/tumor problem, we will use the
cake/pizza example to describe it. The reasoner needs to feed six people with

one Sicilian slice sheet pizza. An analog in memory of cutting a sheet cake
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function main-algorithm

1. Source
Input: 2. Target problem
3. Vertical mapping between source and target

1. A set of new target knowledge states

2. Vertical mappings between corresponding source and target
Output: | states

3. Horizontal mappings between successive target states

4. Transformations connecting successive target states

Procedure

1: while more-source-states(goal-conditions, memory) do

2:  current-s-image < get-next-target-s-image(target problem,
current-s-image)

3:  current-source-s-image <  get-next-source-s-image(source,
current-source-s-image)

4:  current-transformation <— get-transformation(current-s-image)

5:  current-arguments <— get-arguments(current-source-s-image)

6:  source-objects-of-transformation — get-target-object-of-
trans(current-source-s-image)

7:  current-vertical-mapping <  get-mapping(current-target-s-
image, current-source-s-image)

8:  target-object-of-transformation — get-source-object-of-
transformation (current-vertical-mapping, source-objects-of-
transformation)

9:  target-arguments < adapt-arguments(get-arguments(current-
source-s-image, current-source-s-image))

10: memory < memory +  apply-transformation(current-
transformation, target-object-of-transformation, target-
arguments)

11:  memory < memory -+ create-horizontal-mapping(current-
target-s-image, get-next-target-s-image)

12:  current-target-s-image <— get-next-target-s-image

13:  current-source-s-image <— get-next-source-s-image

14:  memory — memory + carry-over-unchanged-
relationships(applied-transformation)

15:  memory < memory + create-vertical-mapping(current-target-
s-image, current-source-s-image)

Table 11
Main algorithm
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function adapt-arguments

1. argument

Input: 2. mapping

Output: | 1. an adapted argument.

Procedure:

if literal? argument then
return argument
else if function? argument then
return calculate-function(argument)
else if component? argument then
return (get-analogous-component(argument, mapping))

S O W W N

Table 12
Algorithm for adapt-arguments

for four people is used to generate a solution. Transfer is still difficult because
somehow the Four in the cake analog must be adapted to the number Six
in the pizza analog. Knowing how many pieces into which to cut the cake or
pizza depends on the number of people in each problem. Some notion of count
is needed. The use of functions as arguments to transformations addresses
this problem. The cake analog is represented with a function that counts the
number of people as its argument for the decompose transformation. This
function has an argument of its own, namely the set of cake eaters, which dur-
ing adaptation adapts into the set of pizza eaters. When the transformation
is applied to the pizza, it counts the members of the set of people in the pizza
problem (which results in six). Decompose produces six pieces of pizza in the

next s-image.

2.4.5  Carry-over-unchanged-relationships

In table 13 is a description of the carry-over-unchanged-relationships
function. The get—-analogous—chunks sub-function constructs returns chunks

that are identical to the input chunks, except that the symbols that have maps
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function carry-over-unchanged-relationships

1. The Memory: memory
. 2. The horizontal mapping: h-mapping
Input: 3. Transformation
4. Previous-s-image
Output: | 1. Analogous chunks.
Procedure:

1: new-chunks < get-chunks(run-transformation(transformation))

2: old-analogous-chunks < get-analogous-chunks(new-chunks, h-
mapping)

3: old-chunks < get-all-chunks(previous-s-image)

4: chunks-to-transfer <— old-chunks — old-analogous-chunks

5: memory < memory + create-analogous-chunks(chunks-to-
transfer, h-mapping)

Table 13

Algorithm for carrying over unchanged relationships

function creation-of-horizontal-maps-between-changed-components

Input: 1. Transformation results
pub: 2. Target-objects-of-transformation
Output: | 1. New horizontal maps between the current and next s-image.
Procedure:
1: post-transform-components — get-chunks(run-

transformation(transformation))
2: memory < memory + create-maps(post-transform-components,
target-objects-of-transformation)

Table 14

Algorithm for creation of horizontal maps between changed components

in the input mapping are replaced with those symbols they are associated

with in those maps. The vertical map relationships are carried over as well,

constituting the vertical maps for unchanged components.
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function creation-of-horizontal-maps-between-unchanged-component

1. Transformation results
2. Old-s-image

Input: 3. Current-s-image

put: 4. Post-transform-components

5. Old-components
6. Current-components

Output: | 1. new horizontal maps between the current and next s-image.

Procedure:

1: old-components < get-all-components(old-s-image) — target-

objects-of-transformation

2: current-components < get-all-components(current-s-image) —
post-transform-components

3: memory <« memory + create-maps(old-components, current-
components)

Table 15
Algorithm for creation of horizontal maps between unchanged components.

2.4.6  Creation-of-horizontal-maps-between-changed-components

The creation-of-horizontal-maps-between-changed-components (see ta-

ble 14) is embedded in the code for each of the transformations. The transformation

results are obtained from running the transformation. The target-objects-of-transformation
are known because they are the input to the transformation. The two lists

are put in alphabetical order and maps are created between each nth list ob-

ject. These are maps within a procedure, showing what elements in earlier

s—-images turn into what elements in later s-images.

Similarly, creation-of-horizontal-maps-between-unchanged-components
(see table 15) makes maps between old objects (the objects in the 01d-s-image
and new objects (from the current-s-image, minus the objects created by
the transformation), alphabetizes them, and creates maps between the nth

item in each list.
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function creation-of-vertical-maps-between-changed-components

1. Target transformation results
2. Source transformation results
3. New-target-components
4. New-source-components

Input:

Output: | 1. new vertical maps between the current source and
s-images.

Procedure:

1: new-target-components <— target transformation results

2: new-source-components <— source transformation results

3: memory < memory + create-maps(new-target-components, new-
source-components)

Table 16
Algorithm for creation of vertical maps between changed components.

2.4.7 Creation-of-vertical-maps-between-changed-components

The algorithm for creating vertical maps between changed components (see
table 16) takes as input the transformation results in the source and target,

alphabetizes them, and creates maps between the nth item in each list.

2.5  FEwaluation of the Transferred Solution

We have tried without sucesss to come up with a method for fully automated
run-time evaluation of the transferred solution to the target problem using
only visuospatial knowledge. Thus, we suggest that the evaluation subtask of
visuospatial analogy in problem solving necessarily requires explicitly repre-
sented causal and functional knowledge. Of course, in some cases, it might be
possible to derive the causal and functional knowledge from the visuospatial

representation but that is beyond the scope of the Proteus project.

Thus, Proteus currently uses precompiled knowledge for evaluating the can-

didate solution to the target problem. As Proteus’ designers, we hand-crafted
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the propositions that a correct solution should have generated and compiled
them into the evaluation task. When Proteus proposes a candidate solution, it
compares the propositions generated by the candidate with the propositions
generated by the correct solution. If the candidate solution fails, then Proteus
returns to the output of retrieval task, and selects a different source case (if

one is available) and attempts to transfer its procedure to the target problem.

3 Evaluation of Proteus

Proteus is an integration of two systems: Geminus [42] and Galatea [5,7,6]. The
Geminus subsystem of Proteus is responsible for the retrieval, mapping and
storage tasks, the Galatea subsystem is responsible for the transfer and eval-
uation tasks, including dynamic generation of mappings between the interme-
diate knowledge states in the source and target cases. Some of the evaluation

of Proteus has been in the context of the Geminus and Galatea subsystems.

Uniformity: Proteus uses an uniform knowledge representation language,

Covlan, for all tasks and subtasks of visuospatial analogy in problem solving.

Generality: We have validated different parts of Proteus for a large range
of problems. In particular, we have validated Geminus’ retrieval method for
a variety of 2-D, vector graphic, line drawings. Similarly, we have validated
Galatea’s transfer method for problems ranging in complexity from cutting
a simple circular shape (e.g., a pizza) in analogy to cutting a similar shape
(e.g., a cake) into smaller parts, to analogy-based design of a weed-trimmer,

to a historical case study of James Clerk Maxwell’s reasoning about vortices
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in electromagnetic fields [7]. We have validated Proteus itself for both the

pizza-cake problem and the fortress-tumor problem.

The choice of the fortress/tumor problem as a running example in this paper
has been deliberate: The fortress/tumor problem is often considered to be a
canonical example in the literature on analogy (e.g., [21]) and because ear-
lier computational models of the fortress/tumor classical example have relied
on the use of (non-visuospatial) causal and functional knowledge [30]. Thus,
successful execution of Proteus on the fortress/tumor problem partly confirms
our initial hypothesis: visuospatial knowledge alone is sufficient for analogical
transfer of problem-solving procedures in some task domains. It also leads to
a refinement of the initial hypothesis: while visuospatial knowledge is suffi-
cient for the retrieval, mapping, transfer and storage subtasks of analogy, the
evaluation subtask appears to require (non-visuospatial) causal and functional

knowledge.

Efficiency: We have conducted efficiency experiments with Geminus [42]. In
our experiments, the long-term memory contained 42 source cases; the number
of visual elements in the indexical s-images of the source cases ranged from
3 to over 50, with an average about 12’ and the number of propositions in
semantic network representing the s-images ranged from a couple of dozen
to over eight thousand. The experiments were conducted with 21 target prob-
lems; each of the s-images in the target problems contains 2 to 5 visual
elements and up to several dozen propositions. Running on a desktop work-
statation, Geminus retrieved the relevant s-images in about 9.32 seconds on
average across all 21 target s-images), doing an average of about 1.49 million

memory accesses (to the index of propositions across all the source s-images)
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per retrieval. Even in the worst-case (characterized by the size of the tar-
get s-image, Geminus took under a minute to retrieve the relevant source

s—images.

Recall that following MAC/FAC [17] the Geminus decomposes the retrieval
task into two subtasks: reminding and selection. Recall also that following
ACME [31], Geminus uses a constraint-satisfaction method for the selection
task. Ablation experiments with Geminus [42], in which we removed the re-
minding subtask of the retrieval task and performed retrieval based solely on
constraint satisfaction, revealed no significant degradation in its performance.
This leads us to the following conjecture about case retrieval in general: when
constraint-satisfaction is used for selection, there may be little need for re-

minding using feature vectors. This conjecture needs further examination.

Cognitive Modeling: We have used Galatea to model the input-output
behavior of human subjects engaged in analogy-based design [6]. In these
experiments [3], human subjects were given a source case of a design of the
entrance to a clean-air laboratory, where the problem was articulated in text
and the solution was expressed both in text and in a drawing. The source case
also contained a problem-solving procedure articulated in text form, which
converted an entrance with a single door to a vestibule with double doors.
In the target problem, which was expressed in text form, the subjects were
asked to draw the design a portable weed-trimmer in analogy to the entrance
to the clean-air laboratory. We then used Galatea to solve exactly the same
target problem with exactly the same source case, except that in Galatea both
the source case and the target problem were expressed only visuospatially. We

found that Galatea successfully solved the above problem.
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For four of the human subjects in the above study, we conducted an additional
experiment with Galatea. We ran Galatea under different initial knowledge
conditions, but without any change to its computational process, its knowl-
edge representation language, or its algorithms. We found that by simply
changing the initial knowledge conditions, we could make Galatea replicate
about half of the features in the drawings made by the four human subjects.
The other half, which related to numerical dimensions and causal processes,
however are beyond Galatea. this paper no part of Proteus is proposed as a
cognitive model. The Galatea section simply replicates some elements in the
input-output behavior of human subjects engaged in analogy-based design.
The above experiments however indicate the range of problems it can address.
Determining whether the level of abstraction of Proteus/Galatea’s visuospa-
tial knowledge is consistent with that of human designers requires additional

research.

4 Related Work

As illustrated in Figure 11 Proteus lies at the intersection of problem solving,
analogical reasoning and visuospatial reasoning: at the task level, it addresses
problem solving; at the method level, it uses analogies to solve problems; and
in terms of knowledge, it uses only visuospatial knowledge. The Figure also

shows where related theories and systems lie on the same Venn diagram.
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Fig. 11. Proteus lies at the intersection of problem solving, analogical reasoning and
visuospatial reasoning. This Figure depicts its relationship with other theories and
systems.

4.1 Analogical Reasoning

As we mentioned earlier, Proteus’ decomposition of the retrieval task into
feature-based reminding and structure-based selection follows MAC/FAC [17].
However, while MAC/FAC uses structure-mapping for the selection task, Pro-
teus uses constraint satisfaction with backtracking. As we noted earlier, the
experiments with the Geminus subsystem of Proteus indicate that the two-
stage decomposition of the retrieval task provides little computational benefit

over just one-stage retrieval based on constraint satisfaction [42] .

There are several general-purpose analogy models that do not endeavor to
give a content account of visuospatial knowledge, or any other content. They
are designed to be able to work with a any representational content. Although
these programs also transfer relations from one analogue to another, they do

not treat problem-solving speficially, and do not transfer procedures. SME,
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I-SME, ACME, and LISA all fall into this category. We will describe each.

The Structure-Mapping Engine [10] is based on cognitive model of Structure-
Mapping [20]. It constrains the mapping problem with several rules including
the systematicity principle, which holds that higher-order (more nested) rela-
tional similarities are preferred over lower-order (less nested) similarities. SME
finds many possible mappings between a source and a target, then evaluates

them according to the map rules.

I-SME [16] and the Incremental Analogy Machine (IAM) [33] are incremental
mappers. An incremental mapper generates a mapping as objects in a given
case are introduced to the mapper one at a time. Proteus does incremental
mapping of a different kind and at a different stage of processing: if and when
an operation creates a new object during transfer of a problem-solving proce-

dure it dynamically generates new mappings for the newly created objects.

As we mentioned earlier, Proteus’ view of retrieval as a constraint satisfaction
problem follows that of ACME [31]. ACME (for Analogical Constraint Map-
ping Engine) uses structural, semantic, and pragmatic constraints for map-
ping. Structure, in this sense, does not necessarily mean physical appearance,
but the nature of the representation: elements are structurally similar if they
share the same relational structure with other elements. Semantic similarity
refers to elements that are either identical symbols or share predicates (e.g. a
common superordinate). Pragmatic constraints pertain to the relative impor-
tance of some propositions in the representation given the goals of the agent.
The mapping is generated as a result of a constraint-satisfaction spreading

activation network.

LISA [32] is cognitive model of analogical mapping. Propositions are made up
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of units that spread activation to each other. Arguments of propositions fire in
synchrony with the case roles to which they are bound, and out of synchrony
with other case roles and arguments. Through spreading activation, the best

map is found.

4.2 Analogical Problem Solving

Implemented theories of analogical problem solving tend to differ from Pro-
teus in three main ways: first, they do not deal specifically with visuospatial
knowledge; second, they do not represent intermediate knowledge states; and
third, they do not create new objects during the transfer of problem solving
procedures. Even those systems that transfer multi-step procedures avoid the
problem of having to create new objects simply because the examples imple-
mented do not require it. We will briefly describe the systems CHEF, Prodigy,
PI, and ToRQUE2.

CHEF [28] is a case-based reasoner that adapts cooking recipes from a source
to a target. CHEF uses non-visuospatial causal and functional knowledge. The
Derivational Analogy theory, [41,40,38] implemented in the Prodigy system,
analogically transfers problem-solving procedures from source cases to target
problems. It uses traces of problem solving, called derivations, for enabling the
transfer. Derivations are scripts of the steps of problem solving, which contain
justifications for why the specific steps in problem solving were chosen over
others. Prodigy also allows for adaptation of the transferred procedure. Like
CHEF, Prodigy too uses non-visuospatial causal and functional knowledge.
Further, in Prodigy, the intermediate knowledge states are not explicitly rep-

resented or saved in the case memory. Instead, a stored case contains only the
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record of the changes made to the states, which allows the knowledge states to
be inferred. Furthermore, whenever an operation in the transferred procedure
creates new objects, Proteus dynamically generates new mapping between the

intermediate knowledge states in the target and the source case.

The Process of Induction (PI) model [30] is the only implemented computa-
tional model, other than Proteus, that solves the fortress/tumor problem. PI
does not represent intermediate knowledge states nor generate new mappings
between them because it does not do analogical transfer in the usual sense
of the term. Instead, it first uses a production system to solve the fortress
problem. Once PI solves the tumor problem, it induces an abstract schema

that works as a single rule that applies to both problems.

The ToRQUE2 system [25-27] uses a taxonomy of generic structural transfor-
mations that can be applied to physical systems. These transformations were
found to be useful in modeling protocols of human subjects solving a problem
dealing with spring systems. ToRQUEZ2’s structural representations are differ-
ent from Proteus’ visuospatial representations: the structural representations
describe a system’s physical composition but typically include only the in-
formation directly relevant for predicting the causal behaviors of the system.
Structural knowledge, like a schematic, shows the components of the system
and the connections among them but leaves out other visuospatial informa-
tion, such as what a component wire looks like, which side of a pump is up,

etc.
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4.8  Visuospatial Knowledge and Reasoning

Visual and diagrammatic reasoning has a large literature, with hundreds of
visual and spatial representation ontologies. We will describe here a few rep-

resentative and more famous implemented systems for comparison to Covlan.

Some systems visuospatially represent domains but use causal and functional
reasoning. The system by Larkin and Simon [34] represents what things are in
a pulley system, indexed by where they are, and use non-visuospatial reason-
ing on those things. Their system uses a propositional representation, unlike
WHISPER [18], which uses a bitmap-like depictive representation. The FROB
system [15] uses both qualitative and quantitative information about physical
domains. All three use causal knowledge to predict the behavior of physical

objects (FROB uses Qualitative Spatial Reasoning (QSR) [14].)

NTAL [23] distinguishes between depictive and descriptive representations (cor-
responding to bitmap and propositional representations), as well as between
visuospatial and spatial (corresponding to where something is and what some-
thing is). As Covlan is intended to be a model of human cognition, future
versions of it will likely distinguish between visual and spatial information.
Similarly, Narayanan, Suwa and Motoda’s model [36] uses diagram frames
(representing lines and spaces and connections between them) and occupancy
array representations (representing, for each pixel, what kind of object is lo-
cated there). The vocabulary of Proteus’ knowledge representation language

is at the same level of abstraction as Narayanan, Suwa and Motoda’s model.

GeoRep [13] takes in 2-D line drawings and outputs the visuospatial relations

in it. First it uses a LLRD (low-level relational describer) module to aggre-
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gate visual primitives. Its visual primitives are: line segments, circular arcs,
circles, ellipses, splines, and text strings. It finds relations of the following
kinds: grouping, proximity detection, reference frame relations, parallel lines,
connection relations, polygon and polyline detection, interval relations, and
boundary descriptions. Then the HLRD (high-level relational describer) finds
higher-level, more domain-specific primitives and relations. GeoRep’s content
account is at the low level — the higher level account is left up to the modeler.
Although the reasoning goal in Proteus is very different from that of Geo-
Rep, its knowledge representation language, Covlan, has considerable overlap
with GeoRep’s vocabulary. Covlan, however, also provides a vocabulary for
representing visuospatial operations, such as move-to-location, and for rep-

resenting a sequence of visuospatial operations in a procedure.

4.4 Visuospatial Analogy

Though there are several implemented systems which do visuospatial anal-
ogy, Proteus stands out in that it is the only one that transfers multi-step

procedures.

We have already described the ANALOGY and Letter Spirit systems in the
introduction, but a couple of additional remarks about Letter Spirit are in
order. Letter Spirit transfers single transformations/attributes (e.g. crossbar-
suppressed) and therefore cannot make analogical transfer of procedures (e.g.
moving something, then resizing it) as Proteus does. In contrast, one can see
how Proteus might be applied to the Letter Spirit’s font domain: The stylistic
guidelines in LetterSpirit, such as “crossbar suppressed” are like the visuospa-

tial transformations in Proteus: “crossbar suppressed” would be a transforma-
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tion of removing an element from an s-image, where element removed would
the crossbar and the s-image would be the prototype letter f. Once the trans-
formation is expressed in Proteus’ vocabulary, it could be applied to all the

other letters one by one.

Like ANALOGY, the PAN system [37] uses graph-like representations of
abstract diagrams and outputs transformations that will turn one diagram
into another. Neither ANALOGY nor PAN however can transfer problem-
solving procedures. MAGI [11] takes visuospatial representations and uses the
Structure-Mapping Engine to find examples of symmetry and repetition in
a single diagram. JUXTA [12] uses MAGI in its processing of a diagram of
two parts. It outputs a mapping between the images, and notes distracting
and important differences. Both MAGI and JUXTA use GeoRep’s visuospatial

representation language.

DIVA [4] is another analogical mapper that uses visuospatial representations.
Specifically, it uses the Java Visual Object System. One of its examples is
the fortress/tumor problem, however, it does not transfer problem solving

procedures.

In computer-aided design, FABEL [19] was an early project to explore the
automated reuse of diagrammatic cases. In particular, TOPO [2], a subsystem
of FABEL, used the maximum common subgraph (MCS) of the target drawing

with the stored drawings for retrieve similar drawings.

REBUILDER [24] is a case-based reasoner that does analogical retrieval, map-
ping, and transfer of software design class diagrams. The diagrams are rep-
resented structurally, not visuospatially, however. This means that while RE-

BUILDER may represent that a teacher has a relationship with a school for
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example, it does not represent as any left-of /right-of, above/below connection

between them.

5 Conclusion

We have described a computational theory of visuospatial analogy in problem
solving that addresses all major subtasks of visuospatial analogy. Proteus is a
computer program that implements and substantiates the theory. The contri-
butions of this paper are that (a) for the first time it describes Proteus as a
whole, and (b) it provides a detailed account of the knowledge representations
and algorithms used by Proteus. Proteus provides a content account as well
as a process account for visuospatial analogy in problem solving. Our work on

Proteus leads us to the following three conclusions:

I: Visuospatial knowledge alone is sufficient for some subtasks of analogical

problem-solving.

We started this work with the hypothesis that visuospatial knowledge alone is
sufficient for analogical problem solving. We deliberately chose the fortress/tumor
problem to test this hypothesis not only because it is a classic example of ana-
logical problem solving but also because previous computational models for
this problem, such as PI [30], relied solely on non-visuospatial causal and
functional knowledge. Based on Proteus, we now refine this hypothesis: visu-
ospatial knowledge alone is sufficient for the retrieval, mapping and transfer

subtasks of analogical transfer of problem-solving procedures.

Proteus also shows that while visuospatial knowledge is useful for the mapping

task, it alone is not sufficient for generating a single mapping between a target
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problem and a retrieved source case matching the target. The difficulty is that
while visuospatial knowledge captures structural constraints (e.g., shapes, and
spatial relations), it does not capture causal and functional knowledge of either
the source or the target, which leaves the mapping task under-constrained
and results in the generation of multiple mappings between the target and the
source. Note that this finding is consistent with earlier work on visuospatial
analogy: while ANALOGY does do mapping based on visuospatial knowledge
alone, it does so in a context entirely different from and much simpler than
transfer of problem-solving procedures, and, in Letter Spirit, the mapping is

compiled into the system’s knowledge.

In addition, Proteus shows that visuospatial knowledge alone cannot enable
evaluation of the transferred solution for the target problem. This finding is
consistent with other work on visuospatial reasoning work, such as WHISPER

[18], which uses non-visuospatial causal knowledge for evaluation.

1I: Visuospatial analogy is enabled by knowledge of shapes, spatial relations,

and shape and spatial transformations.

Proteus uses Covlan, an uniform knowledge representation language, for all
subtasks of visuospatial knowledge. In particular, Proteus shows that the re-
trieval task of visuospatial analogy is enabled by symbolically represented
knowledge of shapes of objects (e.g., spline, ellipse) and spatial relations be-
tween the shapes (e.g., above, left-of) in drawings representing the target and
source cases. It also shows that the transfer task requires additional knowl-
edge, namely, symbolic knowledge of transformations of shapes and spatial
relations from one knowledge state to the next (e.g., move, move-set). The
latter is required because of the need to represent the problem solving steps

and their effects. Of course, Covlan is incomplete; a larger class of domains
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may require additions of its vocabulary.

IIT: Successful analogical transfer of strongly-ordered procedures in which
new objects are created requires generation of mew mappings between the

intermediate knowledge states in the source and target cases.

An unexpected finding of our work on Proteus is that that the successful trans-
fer of strongly-ordered procedures in which new objects are created requires
the problem-solver to dynamically generate intermediate knowledge states and
new mappings between the intermediate knowledge states of the source and
target analogs. This is because the newly created objects are acted on by later
operations. In the tumor problem, for example, the strong ray is first turned
into a several weaker rays. When the problem solver transfers the move sol-
diers operation from the fortress case and seeks to apply the move operation
to the tumor problem, how does it know that the objects corresponding to the
soldiers are the weaker rays? It must have some mapping to make this infer-
ence, and since the weaker rays do not exist in the start state of the tumor
problem, this mapping cannot be part of the initial mapping between the tar-
get and the source. Therefore, the new knowledge state with the weaker rays
must be generated, and then a new mapping must be made between the new

knowledge state and the corresponding knowledge state in the source case.
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