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Abstract

We show that visio-spatial representations and reason-
ing techniques can be used as a similarity metric for
analogical protein structure prediction. Our system re-
trieves pairs of α-helices based on contact map similar-
ity, then transfers and adapts the structure information
to an unknown helix pair, showing that similar protein
contact maps predict similar 3D protein structure. The
success of this method provides support for the notion
that changing representations can enable similarity met-
rics in analogy.

Introduction

It is well known that the right representation greatly
facilitates reasoning and there is a growing recognition
of the need for intelligent architectures to accomodate a
diversity of representations.

The guiding theory of our research is that changing
representations allows reasoners to see similarities in one
representation type that might be difficult to detect in
another. For example, teleological representations of a
human face and the front of a car may have very little
semantic overlap. In this research we focus on visio-
spatial representations. In our example, representing the
headlights and eyes as circles, and the grill and mouth as
a centrally-located hole allows connections to be drawn
between these components.

As people often have visio-spatial experiences when
solving problems (Casakin and Goldschmidt, 1999;
Farah, 1988; Monaghan and Clement, 1999), an impor-
tant step in establishing our above theory is to compu-
tationally show that visio-spatial representations can be
used to solve a variety of problems. In this paper we
provide support for this notion in the domain of protein
structure prediction, an example of a complex problem-
solving domain. We will describe the problem, and then
how our system, Triptych, uses visio-spatial reasoning on
image representations to solve it.

Protein Structure Prediction
A primary goal of molecular biology is to understand the
biological processes of macromolecules in terms of their
physical properties and chemical structure. Since know-
ing the structure of macromolecules is crucial to under-
standing their functions, and all life crucially depends on
protein function, an important part of molecular biology
is understanding the three-dimensional (3D) structure of
proteins.

Proteins are composed of one or more chains of amino
acid residues. The description of which residues appear
and in what order is the protein’s “primary structure”.
According to the laws of chemistry, the chains twist,
fold, and bond at different points, forming a complex
3D shape. Subchains form regular “secondary struc-
tures”, the two main types being α-helices and β-strands.
The three-dimensional structure of a chain is its “ter-
tiary structure”, and the overall protein shape (which
may involve several chains) is known as its “quaternary
structure”. A major unsolved problem for the biological
sciences is to be able to reliably predict the quaternary
structure from the primary. This, at the highest level, is
our problem domain.

Approaches to protein structure prediction vary from
those that apply physical principles to those that con-
sider known amino acid sequences and previously deter-
mined protein structures. Many of the latter use what
is known as “homology” as a similarity metric. In this
context homology is the similarity of two amino acid se-
quences. Our work also falls in the latter category, but
rather than using primary structure directly, we compare
contact maps.

Contact maps A distance map, D, for a protein with
n amino acid residues is an n×n, symmetric array where
entry D(ai, aj) is the distance between residue ai and
residue aj, generally calculated at the coordinates of the
Cα (carbon-alpha) atoms for the residues. Given a dis-
tance map D, we compute a contact map C for the pro-
tein as a symmetric, n × n array such that:

C(ai, aj) =

{

1, if D(ai, aj) < t;
0, otherwise.

where t is a given threshold value (in our work this thesh-
old is 10Å). There exists a contact between residues ai

and aj if and only if they are within a given distance t
of one another in the protein structure.

Researchers have considered various approaches for
the process of predicting contact maps for a protein
from its primary sequence and structural features; these
are primarily based on neural network-based methods
(Fariselli et al., 2001). While results from this work
is encouraging, it still results in maps that contain a
large degree of noise. Thus we carry out our initial ex-
periments on idealized maps generated from the Protein
Data Bank (PDB) (Berman et al., 2000). Future work



will include prediction of structure from predicted con-
tact maps.

A contact map is a translational and rotational invari-
ant, visio-spatial representation that captures some of
the protein’s relevant structural information. Our gen-
eral hypothesis is that visual processing on contact maps
enables effective retrieval of similar structures, even if
homology sequence is ignored. Contact maps provide
a “fingerprint” that can be used to efficiently compare
proteins to find ones with similar substructures. We will
refine this hypothesis when we describe our implemen-
tation.

Analogy Applied to Protein Structure

Prediction

Rather than working with whole proteins, we are work-
ing with pairs of α-helices. At the highest level, each
time Triptych runs it takes as input: 1) the contact map
for the unknown (target) helix pair, and 2) a memory
of known helix pair structures and contact maps. The
final output consists of a location in space (x, y, z co-
ordinates) of each amino acid residue in the target helix
pair.

Analogical problem solving is founded on the premise
that similar problems have similar solutions. Experi-
ences are retrieved, mapped, and reused during problem
solving. Aaronson et al. (Aaronson et al., 1993) suggest
that analogical reasoning is particularly applicable to the
biological domain, partly because biological systems are
often homologous (rooted in evolution). As well, biolo-
gists often use analogy, where experiments are designed
and performed based on the similarity between features
of a new system and those of known systems. Analogical
and case-based reasoning has previously been applied to
a number of problems in molecular biology; an overview
of these systems can be found in (Jurisica and Glasgow,
2004).

Our system retrieves and adapts protein data from the
PDB in order to construct potential 3D structural mod-
els for our target helix pair. These models are evaluated
in terms of domain knowledge and the “best” structures
will ultimately be used as building blocks at the next
level of model building.

We retrieve similar α-helix pair contact maps and
adapt the known structures to predict alignments for
the unknown structures.

To predict the alignment of helices in 3D space, we
consider helix pair contact maps, Csm,sn

, corresponding
to pairs of helices (sm, sn) such that there are greater
than four contacts..1 This map is the subarray of C
such that the the rows of Csm,sn

correspond to the amino
acid residues in secondary structure sm and the columns
correspond to the residues in secondary structure sn.
These maps need only be defined for contacts along and
below the diagonal of the helix pair contact map, as the
map for pair (sm, sn) is equivalent to that for (sn, sm).
Note, that unlike the protein contact map the contact

1If there are fewer than five contacts between two sec-
ondary structures it is difficult to determine their orientation
from their contacts.

maps for pairs of helices are not generally symmetric.
The images in Figure 1 illustrate a contact maps for
pairs of α-helices.

The retrieve task returns a list of retrieved helix pairs,
ordered according to similarity. The similarity metric
is a visual similarity between source and target contact
maps. The adapt module transfers structure information
from the top retrievals (called the “sources”) and mod-
ifies the information according the the specifics of the
target.

Implemented Modules: Retrieval and

Adaptation

Our focus is on predicting the alignment, or relative lo-
cation, in 3D space of α-helix pairs given the contacts
between their residues.

Retrieval Module For each query map Csm,sn
we

retrieve helix pairs with contact maps most similar to
Csm,sn

.
A similarity measure for comparing the query contact

map with maps generated from structures in the PDB
was derived using techniques from machine vision, where
we consider the black regions to be the image within
the array. We were less concerned about the dimensions
of the map, than what it looked like in terms of shape
and location of black regions (regions which contain con-
tacts). For example, Figure 1 illustrates three different
maps for pairs of helices, where maps (a) and (c) are
considered similar to one another, and (b) is different
from the other two.

First we blur the images using Gaussian smoothing
(Gonzalez and Woods, 1992). This is often done to re-
move unwanted details and noise. Contacts are treated
as black points, and points surrounding them are turned
some shade of gray depending on their distance from the
nearest contacts. The grayscale tone is determined by a
Gaussian distribution where the contacts are the means.
The maps are then morphed using a technique called
closing, which removes low-valued points but keeps the
rest of the image intact (Gonzalez and Woods, 1992).

The retrieval of similar contact maps involves a two-
tiered approach. Given a query contact map, the first
tier uses three general content descriptors to cull the
dataset of dissimilar contact maps: quadtrees, color and
edge distributions, and gray-level co-occurrence matri-
ces.

Quadtrees have been successfully applied to im-
age compression, comparison, and classification. The
quadtree (Sullivan and Baker, 1994) is a hierarchical
data structure used to represent images. For an image,
a two-dimensional region is recursively decomposed into
quadrants where each quadrant is a node in the quadtree.

Color distribution (Smith and Chang, 1994) is a com-
mon feature used in image retrieval. Pixel color values
are put into a histogram form: colors are discretized and
counted and placed in bins. Global histogram represen-
tation has the drawback of loss of location, shape, and
texture information. As a result images retrieved based
on similar color distributions may not be semantically



(a) (b) (c)

Figure 1: Illustration of similar, (a) and (c), contact maps and a map (b) that is dissimilar to the other two. (b)
shows the sub-contact CHelix−6,Helix−8 map for a pair of helices in protein Bacterioferritin. Since the diagonal band
shows contacts that extend from the beginning of one and end of another, to the end of one and beginning of another,
we can discern that the helices are oriented anti-parallel to one another.

related.

Edge detection (Won et al., 2002), and the features
that can be extracted from it, is commonly used as a
content descriptor of images. In this work we use the
Canny edge detection method (Canny, 1986). The Gaus-
sian smoothing was necessary for this step to work, as
it uses gradients and cannot be applied to binary im-
ages. Our measure of similarity based on edge detection
involves comparing histograms showing the frequency of
edges with angles of 0o, 45o, 90o, and 135o.

A statistical method that considers the spatial rela-
tionship of pixels, the gray-level co-occurrence matrix
(GLCM) (Haralick et al., 1973) is a texture analysis
method from which various statistical features can be
extracted. Each entry (i, j) in the GLCM corresponds
to the number of occurrences of the pair of gray levels
i and j which are a distance d apart in the original im-
age. For example, if d is 1, then GLCM entry (1, 2) will
contain the number 4 if there are four instances of gray
value 1 adjacent to gray value 2 in the original image.
In analysis, the GLCM are normalized so the histogram
or features extracted can be compared.

A committee of these general content descriptors is
used in the first tier of retrieval. Quadtrees vectors
were generated from the binary, smoothed, and mor-
phed contact maps. The color and edge distributions and
gray level co-occurrence matrices were obtained from the
smoothed contact maps. The committee results in a set
of contact maps which are present in the retrievals of
two or more general content descriptors. We determined
empirically that 100 retrievals for each descriptor is suf-

ficient. The results of the committee are then used in
the second tier of retrieval.

For the second tier, the Jaccard’s distance (Jaccard,
1908) was calculated between each contact map from
the first tier and the query map. Because the maps
vary in size, a sliding window approach was used to
determine the best matching regions between the query
and the contact maps from the first tier. The best
mapping regions also provide registration of residues for
evaluation using RMSD (Root-Mean-Squared Distance),
the standard measure of distance for protein structures.
The best 25 retrievals were then selected from the 100
as the final set of contact maps to be returned.

Adaptation Module The retrieval process returns,
for each query contact map, potential helix pairs from
the PDB, ranked in order of estimated similarity. For
each query map, the adaptation phase transfers the
structure information from the highest-ranking struc-
tures to the input helix pair.

Transferring locations requires a mapping function –
that is, a set of alignments that determine which residues
in the target structure map to which residues in the re-
trieved source structure. This is achieved by first align-
ing the contact maps so that the mean cell location of
contacting amino acid residues in the retrieved struc-
ture aligns with the mean cell location of contacting
residues in the target. Then all amino acid residues in
the target structure that have corresponding residues in
the source structure are given the coordinate informa-



tion from these residues. Since the registration may not
feature a great overlap of the maps, usually there re-
main some target residues with no coordinates (i.e., no
corresponding residue in the known structure to transfer
over). Since α-helices tend to have a consistent struc-
ture, the missing coordinates are filled in using general
domain knowledge. Specifically, each turn of an α-helix
is estimated at 5.4 Å along the helix axis and each turn
at 5 Å across. Using this information and the helix axis,
calculated from the filled-in locations, our system is able
to infer these unmatched residue locations. This is text-
book Biochemistry knowledge. Figure 2 illustrates the
portions of the helices that are determined through our
mapping function and those constructed from domain
knowledge (grown area).

Figure 2: In this figure the lower helix is the target and
the upper is the source. The dotted gray circle represents
the mapping area. The locations of the target amino
acid residues for which there are no cooresponding source
residues are inferred based on the known geometry for
helices. These “grown” areas are represented with the
dotted black line.

Given this implementation and our overall hypothe-
sis, our refined hypothesis is that analogy using contact
map similarity can effectively generate accurate protein
substructure predictions. We applied the retrieval and
adaptation components of Triptych to a set of 61 pro-
teins, mostly all α chains, retrieved from the PDB.2

Results

For each protein, we computed the distance map, con-
tact map and secondary structure contact map. From
the contact maps, we were able to derive 422 maps that
described contacts for pairs of helices.

The results of the retrieval process for 422 unique test
queries are shown in Table 1. N is the number of helix
pairs retrieved; Mean describes the average RMSD for
the queries and Std is the average standard deviation.
Mean Best and Rank describe the average best RMSD

2The proteins were 1a0aA, 1a1z , 1a28A, 1acp , 1afrA,
1aj8A, 1akhA, 1akhB, 1am9A, 1aoiA, 1aoiB, 1arv , 1auiB,
1auwA, 1bbhA, 1bcfA, 1bgp , 1bh9A, 1bh9B, 1bu7A, 1bvb ,
1c52 , 1cc5 , 1cem , 1cktA, 1cll , 1cpq , 1csh , 1cy5A, 1d9cA,
1dceB, 1dpsA, 1ea1A, 1eerA, 1eteA, 1fce , 1fgjA, 1ft1B,
1furA, 1gakA,
1hcrA, 1hnr , 1hryA, 1huuA, 1hyp , 1kx2A, 1lbd , 1lfb , 1lis ,
1lmb3,
1mhyD, 1neq , 1pbwA, 1pru , 1rzl , 1tc3C, 1tx4A, 1uxc ,
2af8 , 2hddA, and 2ilk .

N Mean Std MeanBest Rank

100 1.8604 0.8035 0.5259 7.5
50 1.6498 0.6447 0.5303 7
25 1.3944 0.5077 0.5506 5
10 1.1919 0.4166 0.6034 3

Table 1: The retrieval results of the committee on 422
unique queries when the top N out of 100 are returned
as the final set of contact maps.

n RMSD
1 3.6668
5 2.2667
10 1.8814
25 1.5286
50 1.3921
100 1.3011
200 1.2507
422(all) 1.2426

Table 2: Experimental results when considering the
adaptation of the top N results. RMSD denotes the
mean of the best scores for each of the 422 input helix
pairs for the top N retrievals.

and its median rank within the final set of contact maps.
The results suggest the following: 1) as N, the number
of retrieved helix pairs, decreases the average RMSD of
the final set of contact maps improves, 2) the Mean Best
represents the best structure match and worsens as N
decreases, and 3) as N increases from 25 to 50 to 100,
the Mean Best does not change significantly.

Further examination of the 100 retrievals using the
committee determined that 65.40% of the 422 queries
have its best RMSD fall within the top 10 retrievals,
83.18% within the top 25 and 96.45% within the top 50.
Thus, a final set of contact maps consisting of the top 25
retrievals from a set of 100 seems to be the best balance
between a low average RMSD over all the retrievals and
a low RMSD for the average best retrieval. This ensures
all the retrievals are similar to the query and contains
the best match in ∼ 83% of the helix pairs.

Using the results of the retrievals module, we evalu-
ated the adaptation method by comparing the predicted
locations of the residues to the actual locations, as given
in the Protein Data Bank (PDB) in terms of RSMD.
The results when considering the top N retrievals, for N
= 1, 5, 10 25, 50, 100, 200, and 422 are presented Ta-
ble 2. These results suggest that we converge to a good
solution when considering about the top 50 solutions.

The RMSDs presented are acceptably accurate in the
biochemistry literature. See (Wang et al., 2005) for an
empirical study with an RMSD of 1.6.

Note that the retrieval scores for the Mean Best (in
terms of RMSD distance between the correct and pre-
dicted structures) are less than the adaptation scores
(which reported the distance between the retrieved struc-



tures and the correct structure). The reason for this is
that the retrieval scores are based on the RMSD of only
the regions of the helices in contact with each other.
The adaptation method extends the helices beyond the
regions of contact based on biochemical knowledge, af-
fording more opportunity for error.

Related Work

Previous methods for the recovery of 3D structure from
distance contact maps are mostly based on distance ge-
ometry and stochastic optimization techniques, though
none look specifically at prediction of helix pair struc-
tures.

The issue of visual knowledge in analogy and case-
based reasoning has attracted the attention of re-
searchers in several areas. Below we relate our work to
some analogical problem solving systems that use visio-
spatial knowledge.

Previous visual analogy work in molecular biology do-
mains include visualizing crystallographic data at differ-
ent resolutions (Glasgow et al., 1993), in drug design
(Biname et al., 2004), and in in-vitro fertilization (Ju-
risica and Glasgow, 2000). Perner has applied visual
analogy to image segmentation of CT images (Perner,
1999), HEp-2 cell images (Perner, 1998), and the identi-
fication of fungi (Perner et al., 2003).

Analogy with spatial reasoning has been applied to
non-bioinformatics domains as well. FABEL (Gebhardt
et al., 1997) is an example of a system that adapts dia-
grammatic cases in the domain of architectural design.
REBUILDER (Gomes et al., 2003) is an analogical rea-
soner that does retrieval, mapping, and transfer of soft-
ware design class diagrams. FAMING (Faltings and Sun,
1996) makes analogies with physical mechanism parts.

Visual analogy has been used for cognitive modeling
as well. DIVA (Croft and Thagard, 2002) is an analogi-
cal mapper that uses visio-spatial representations, using
the Java Visual Object System. It does no transfer of
problem solutions and uses the ACME architecture for
mapping (Holyoak and Thagard, 1997). MAGI (Fer-
guson, 1994) takes visual representations and uses the
Structure-Mapping Engine (Falkenhainer et al., 1990)
to find examples of symmetry and repetition in a sin-
gle image through analogy. The Galatea system (Davies
and Goel, 2001) uses only visio-spatial representations of
problem-solving procedures and transfers a source solu-
tion to a target solution. By using a sufficiently abstract
visual language it is able to transfer problem-solving pro-
cedures between semantically distant analogs. The work
on Galatea also supports the notion that visio-spatial
representations are useful for problem-solving.

Discussion

In this paper we described and demonstrated the appli-
cability of the analogy methodology to the problem of
secondary structure alignment from contact maps. Our
hypothesis was that analogy using contact map similar-
ity can effectively generate accurate protein substruc-
ture predictions. Triptych retrieves protein substruc-
tures based on visual similarity of contact maps. Initial

results suggest that the retrieve and adapt phases are
successful in finding similar contact maps in the PDB
and modifying these to predict the alignment of pairs
of helices, supporting this hypothesis. The advantage
and novelty of our approach lies in its use of multi-
ple sources of knowledge, including existing structural
knowledge from the PDB, expert and text book knowl-
edge (as used in the helix extension), as well as knowl-
edge mined from the database. Once the viability of the
approach is shown to be effective with idealized contact
maps, the predicted, error-prone contact maps can be
used as input.

Though not based on a cognitive model, Triptych
shows how visio-spatial reasoning can facilitate problem
solving in a another complex domain, building the case
for the value of visual and spatial representations and
reasoning for intelligent systems in general.

The theory behind this work is that changing represen-
tations can provide novel similarity insights. In this work
we use contact maps and treat them as binary images,
applying image processing techniques to them to retrieve
similar protein substructures. In the adapt module, the
information transferred is purely spatial. The success
of this method for α-helix pair structure prediction pro-
vides preliminary support for this theory, in that gen-
erated visio-spatial representations can provide a means
to find similarity. Future work will compare the results
of contact map retrieval to sequence homology retrieval
to investigate in exactly which conditions contact map
similarity (representing visio-spatial representations) is
superior to the non-visual homology similarity metric.
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